Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On 3-stable number conditions in *n*-connected claw-free graphs

Zheng Yan^a, Masao Tsugaki^{b,*}

^a Institute of Applied Mathematics, Yangtzeu University, Jingzhou, PR China ^b Tokyo University of Science, Tokyo, Japan

ARTICLE INFO

Article history: Received 27 December 2016 Received in revised form 8 November 2017 Accepted 15 April 2018

Keywords: Claw-free Independence number K-ended tree Stable set Hamiltonian cycle Connectivity

ABSTRACT

For a subgraph *X* of *G*, let $\alpha_G^2(X)$ be the maximum number of vertices of *X* that are pairwise distance at least three in *G*. In this paper, we prove three theorems. Let *n* be a positive integer, and let *H* be a subgraph of an *n*-connected claw-free graph *G*. We prove that if $n \ge 2$, then either *H* can be covered by a cycle in *G*, or there exists a cycle *C* in *G* such that $\alpha_G^2(H - V(C)) \le \alpha_G^2(H) - n$. This result generalizes the result of Broersma and Lu that *G* has a cycle covering all the vertices of *H* if $\alpha_G^2(H) \le n$. We also prove that if $n \ge 1$, then either *H* can be covered by a path in *G*, or there exists a path *P* in *G* such that $\alpha_G^2(H - V(P)) \le \alpha_G^2(H) - n - 1$. By using the second result, we prove the third result. For a tree *T*, a vertex of *T* with degree one is called a leaf of *T*. For an integer $k \ge 2$, a tree which has at most *k* leaves is called a *k*-ended tree. We prove that if $\alpha_G^2(H) \le n + k - 1$, then *G* has a *k*-ended tree covering all the vertices of *H*. This result gives a positive answer to the conjecture proposed by Kano et al. (2012).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple graphs, which have neither loops nor multiple edges. Let *G* be a graph. Let *V*(*G*) and *E*(*G*) be the set of vertices of *G* and the set of edges of *G*, respectively. Let $\alpha(G)$ be the independence number of *G*. We sometimes write |G| for the order of *G*. For a vertex *v* of *G*, let $N_G(v)$ be the neighborhood of *v* in *G*. For two distinct vertices *x* and *y* of *G*, let $d_G(x, y)$ be the distance between *x* and *y* in *G*. We call a vertex set of *G* a 3-*stable set* if the distance between each pair of distinct vertices of it is at least 3. For a subgraph (or subset) *H* of *G* (or *V*(*G*)), let $\alpha_G^2(H) = \max\{|S| : S \subseteq V(H) (\text{or } S \subseteq H) \text{ is a 3-stable set of } G\}$. A graph *G* is *claw-free* if *G* has no induced subgraph isomorphic to $K_{1,3}$.

Chvátal and Erdős gave an independence number condition for a graph to have a hamiltonian cycle as follows.

Theorem 1 (*Chvátal and Erdős* [3]). Let $n \ge 2$ be a positive integer, and let *G* be an *n*-connected graph. If $\alpha(G) \le n$, then *G* has a hamiltonian cycle.

A hamiltonian cycle is a cycle containing all the vertices of a graph. In this sense, Fournier considers a cycle containing specified vertices as a generalization of a hamiltonian cycle.

Theorem 2 (Fournier [4]). Let $n \ge 2$ be an integer, and let H be a subgraph of an n-connected graph G. If $\alpha(H) \le n$, then G has a cycle covering all the vertices of H.

https://doi.org/10.1016/j.disc.2018.04.017 0012-365X/© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: yanzhenghubei@163.com (Z. Yan), tsugaki@hotmail.com (M. Tsugaki).

Kouider generalized above two theorems as follows.

Theorem 3 (Kouider [6]). Let $n \ge 2$ be an integer, and let H be a subgraph of an n-connected graph G. Then either H can be covered by a cycle in G, or there exists a cycle C in G such that $\alpha(H - V(C)) \le \alpha(H) - n$.

It seems that the situation is quite different if we consider claw-free graphs. But, by using $\alpha_G^3(*)$ instead of $\alpha(*)$, Broersma and Lu obtained the following analog of Theorem 1 for claw-free graphs.

Theorem 4 (Broersma and Lu [2]). Let $n \ge 2$ be an integer, and let H be a subgraph of an n-connected claw-free graph G. If $\alpha_{G}^{2}(H) \le n$, then G has a cycle covering all the vertices of H.

In this paper, we show that the analog of Theorem 3 for claw-free graphs also holds. We prove the following theorem.

Theorem 5. Let $n \ge 2$ be an integer, and let H be a subgraph of an n-connected claw-free graph G. Then either H can be covered by a cycle in G, or there exists a cycle C in G such that $\alpha_G^2(H - V(C)) \le \alpha_G^2(H) - n$.

By modifying the proof of Theorem 5, we also prove the following theorem.

Theorem 6. Let *n* be a positive integer, and let *H* be a subgraph of an *n*-connected claw-free graph *G*. Then either *H* can be covered by a path in *G*, or there exists a path *P* in *G* such that $\alpha_G^3(H - V(P)) \le \alpha_G^3(H) - n - 1$.

By using Theorem 6, we prove the third main theorem which gives a positive answer to the conjecture proposed by Kano et al. in [5]. Let *G* be a graph. A vertex of *G* with degree one is called a *leaf*, and the set of leaves of *G* is denoted by *Leaf*(*G*). A tree having at most *k* leaves is called a *k*-ended tree. For a graph *G*, $\sigma_k(G)$ denotes the minimum degree sum of *k* independent vertices of *G* if $\alpha(G) \ge k$. Otherwise, we set $\sigma_k(G) = \infty$. The following theorem gives a degree sum condition for a graph to have a spanning *k*-ended tree.

Theorem 7 (Broersma and Tuinstra [1]). Let $k \ge 2$ be an integer, and let G be a connected graph. If $\sigma_2(G) \ge |G| - k + 1$, then G has a spanning k-ended tree.

Kano et al. show that the condition becomes much weaker if the graph is claw-free.

Theorem 8 (*Kano, Kyaw, Matsuda, Ozeki, Saito and Yamashita* [5]). Let $k \ge 2$ be an integer, and let *G* be a connected claw-free graph. If $\sigma_{k+1}(G) \ge |G| - k$, then *G* has a spanning *k*-ended tree.

In [5], they also proposed the following conjecture. Note that in [7], Ryjáček obtained that every 7-connected claw-free graph is hamiltonian.

Conjecture 9. Let k and n be integers such that $k \ge 2$ and $2 \le n \le 6$, and let G be an n-connected claw-free graph. If $\sigma_{n+k}(G) \ge |G| - n - k + 1$, then G has a spanning k-ended tree.

We obtain the following result which implies Theorem 8 and Conjecture 9.

Theorem 10. Let $k \ge 2$ and $n \ge 1$ be integers, and let H be a subgraph of an n-connected claw-free graph G. If $\alpha_G^3(H) \le n+k-1$, then G has a k-ended tree covering all the vertices of H.

Proof of Theorem 8 and Conjecture 9. If there exists a 3-stable set *S* of *G* such that |S| = n+k, then $\sigma_{n+k}(G) \le \sum_{v \in S} |N_G(v)| \le |G| - (n+k) < |G| - n - k + 1$. Therefore, $\sigma_{n+k}(G) \ge |G| - n - k + 1$ implies $\alpha_G^3(G) \le n + k - 1$. Hence, Theorem 10 implies Theorem 8 and Conjecture 9. \Box

2. Proof of Theorem 5

In order to prove Theorem 5, we first introduce some notation and facts. Let *C* be an oriented cycle (or a path) and $x, y \in V(C)$. We denote the successor and the predecessor of *x* on *C* by x^+ and x^- , respectively. And we denote by C[x, y] a path from *x* to *y* along the orientation of *C*. We denote $C[x, y] - \{x, y\}$, $C[x, y] - \{x\}$, $C[x, y] - \{y\}$ by C(x, y), C(x, y] and C[x, y), respectively. Let *G* be a graph, and *H* be a subgraph of *G*. For $x \in V(G) - V(H)$, we call *x* is insertible into *H* if there exist $u, u' \in V(H)$ such that $uu' \in E(H)$ and $xu, xu' \in E(G)$. We can easily see that the following two facts hold by the definition of $\alpha_G^2(*)$.

Fact 1. Let *H* and *H'* be subgraphs of a graph *G* such that $V(H') \subseteq V(H)$. Then $\alpha_G^3(H') \leq \alpha_G^3(H)$.

Fact 2. Let H and H' be subgraphs of a graph G such that $d_G(x, y) \ge 3$ for any $x \in V(H)$ and $y \in V(H')$. Then $\alpha_G^3(H \cup H') = \alpha_G^3(H) + \alpha_G^3(H')$.

Download English Version:

https://daneshyari.com/en/article/8902881

Download Persian Version:

https://daneshyari.com/article/8902881

Daneshyari.com