Perspective

A new sufficient condition for a toroidal graph to be 4-choosable

Jing Lv, Danjun Huang*
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

A R TICLE IN F O

Article history:

Received 23 September 2017
Received in revised form 26 March 2018
Accepted 29 June 2018

Keywords:

Toroidal graph
Choosability
Cycle

Abstract

A graph G is k-choosable if G can be properly colored whenever every vertex has a list of at least k available colors. In this paper, we will proof that if every 5-cycle of toroidal graph G is not adjacent simultaneously to 3-cycles and 4-cycles, then G is 4 -choosable. This improves a result shown in Xu and Wu (2017), which stated that if every 5-cycle of planar graph G is not adjacent simultaneously to 3-cycles and 4-cycles, then G is 4-choosable.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow from [2] for terminologies and notations not defined here.

A proper coloring of a graph G is an assignment c of integers to the vertices of G such that $c(u) \neq c(v)$ for any two adjacent vertices u, v. For a given list assignment $L=\{L(v) \mid v \in V(G)\}$, a graph G is list L-colorable if there exists a proper coloring c of the vertices such that $c(v) \in L(v)$ for all $v \in V(G)$. If G is list L-colorable for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is k-choosable. The list chromatic number, denoted by $\chi_{l}(G)$, is the least integer k such that G is k-choosable.

A graph G is toroidal if it can be drawn on the torus so that the edges meet only at the vertices. For a graph G embedded into the totus, we use $V(G), E(G), F(G)$ (or simple V, E, F) to denote its vertex set, edge set and face set, respectively. For a vertex $v \in V$, the degree of v, denoted by $d(v)$, is the number of edges incident with v in G. For a face $f \in F$, the degree of f, denoted by $d(f)$, is the number of edges incident with f in G (a cut-edge is counted twice). A vertex $v \in V$ is called a k-, k^{+}, or k^{-}-vertex if $d(v)=k, \geq k$, or $\leq k$, respectively. The notion of a $k-, k^{+}$, or k^{-}-face is similarly defined. The minimum degree of $G, \min \{d(v) \mid v \in V\}$, is denoted by $\delta(G)$. We say that two cycles (or faces) are adjacent if they share at least one edge. Two cycles (or faces) are normally adjacent if they share exactly one edge. A chord of a cycle C is an edge that connects two non-consecutive vertices of C. For convenience, we denote by $n_{d}(f)$ the number of d-vertices incident with the face f. Similarly, we can define $n_{d+}(f)$, $n_{d-}(f)$. A face f is called light if $n_{4}(f)=d(f)$.

The concept of list-coloring was introduced by Vizing [10] and independently by Erdős et al. [6]. Thomassen [9] proved that every planar graph is 5-choosable, whereas Voigt [11] presented an example of a planar graph which is not 4-choosable. It is proved in [1] that every toroidal graph G is 7-choosable, and $\chi_{l}(G)=7$ if and only if $K_{7} \subseteq G$. More recently, Cai et al. [3] proved that if G is a toroidal graph with no cycles of a fixed length k, then (1) $\chi_{l}(G) \leq 4$ if $k \in 3,4,5$; (2) $\chi_{l}(G) \leq 5$ if $k=6$; and $(3) \chi_{l}(G) \leq 6$ if $k=7$, and moreover $\chi_{l}(G)=6$ if and only if $K_{6} \subseteq G$. Luo [8] proved that every toroidal graph without intersecting triangles is 4 -choosable. Xu and Wu [12] proved that every 5-cycle of planar graph G is not simultaneously

[^0]adjacent to 3-cycles and 4-cycles, then G is 4-choosable. In this paper, we generalize the result in [12] to the toroidal graph by showing the following theorem:

Theorem 1. Let G be a toroidal graph. If every 5-cycles of G is not adjacent simultaneously to 3-cycles and 4-cycles, then G is 4-choosable.

2. Proof of Theorem 1

Arguing by contradiction, we assume that $G=(V, E)$ is a counterexample to Theorem 1 having the fewest vertices. Embedding G into the torus, then G has the following properties:
$\mathbf{P 1} \delta(G) \geq 4$ (see [7]).
P2 G does not contain any induced even cycle C such that each vertex of C is of degree 4 (see [5]).
Since every 5-cycle of G is not adjacent simultaneously to 3 -cycles and 4-cycles, P3 and P4 hold.
P3 Any 5-cycle has no chord.
P4 If two 3-faces are adjacent, then each other face adjacent to at least one of them is a 6^{+}-face.
A θ-graph is a one consisting of two 3-vertices and three pairwise internally disjoint paths between the two 3-vertices. Clearly, a k-cycle with one internal chord is a special θ-graph. A θ-subgraph of G is an induced subgraph that is isomorphic to a θ-graph. Furthermore, we use $S \theta$ to denote such a special θ-subgraph of G in which one of the ends of the internal chord is a 5^{-}-vertex and all of the other vertices are 4 -vertices in G.
P5 G contains no $S \theta$ (see [4]).
Proof. Assume to the contrary that G has an $S \theta$. Let H be an $S \theta$ of G with the internal chord $e=x_{0} x$, where x is a 5^{-}-vertex. That is, $H=C+\left\{x_{0} x\right\}$. Let L be any list assignment of G with $|L(v)| \geq 4$ for all $v \in V(G)$. Deleting H from G, we get a smaller graph G^{\prime}. By the minimality of G, G^{\prime} is L-colorable. Let ϕ be an L-coloring of G^{\prime}. We define a list assignment $L^{\prime}(v)=L(v) \backslash\left\{\phi\left(v^{\prime}\right) \mid v^{\prime} v \in E(G), v^{\prime} \in V(G) \backslash V(H)\right\}$ for every $v \in V(H)$. By the definition of an $S \theta,\left|L^{\prime}\left(x_{0}\right)\right| \geq 3$ and $\left|L^{\prime}(v)\right| \geq 2$ for every $v \in V(H) \backslash\left\{x_{0}\right\}$. If, for every $v \in V(H) \backslash\left\{x_{0}\right\}$, we have $\{\alpha, \beta\} \subseteq L^{\prime}(v)$. Then we can choose a color from $L^{\prime}\left(x_{0}\right) \backslash\{\alpha, \beta\}$ to color x_{0}, and using α and β color all other vertices of H alternatively in a cyclic order. Next, suppose that there are two adjacent vertices on the path $P=C \backslash\left\{x_{0}\right\}$, say u and w, such that $L^{\prime}(u) \neq L^{\prime}(w)$. Without loss of generality, assume that u is closer to x_{0} than w on the cycle C. Now we can first choose a color from $L^{\prime}(w) \backslash L^{\prime}(u)$ to color w, then color all the remaining vertices of C in a chosen cyclic order such that u is colored finally, giving an L-coloring of G, a contradiction.

If a light 5-face $P=\left[v_{1} v_{2} \cdots v_{5}\right]$ is adjacent to a 3-face $T=\left[v_{1} v_{2} u\right]$, then $u \notin V(P)$ by P3. We call u a source of P through T, and P a sink of u through T.

Lemma 2. (1) Every light 4-face must be adjacent to a 6^{+}-face.
(2) If a 5-cycle P is adjacent to a 3-cycle T, then they are normally adjacent and $P \cup T$ is $a \theta$-subgraph.
(3) Let u be a source of a light 5-face P. Then $d(u) \geq 5$.
(4) G contains no 6 -cycle C such that each vertex of C is of degree 4 .

Proof. (1) Let $f=\left[v_{1} v_{2} v_{3} v_{4}\right]$ be the 4 -face with $d\left(v_{i}\right)=4$ for $i=1,2,3,4$. Then f must have a chord by P4, say $v_{1} v_{3} \in E$. Hence, it is easy to check that each face adjacent to f is a 6^{+}-face, since every 5 -cycle of G is not adjacent simultaneously to 3 -cycles and 4-cycles.
(2) It is clear that P and T are normally adjacent by P3. Next prove that $P \cup T$ is a θ-subgraph. Let $P=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be the 5 -cycle, and $T=v_{1} v_{2} u v_{1}$ be the 3 -cycle adjacent to P. Then $C=u v_{2} v_{3} v_{4} v_{5} v_{1} u$ is a 6 -cycle of G. If $P \cup T$ is not a θ-subgraph, then C has one more chord other than $v_{1} v_{2}$. By P3, the second chord of C must be $u v_{3}$ or $u v_{4}$. Hence, G has a 5 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ adjacent to 3 -cycle $v_{1} u v_{2} v_{1}$ and 4 -cycle $v_{1} u v_{3} v_{2} v_{1}$ or $v_{1} v_{5} v_{4} u v_{1}$, a contradiction. So $P \cup T$ is a θ-subgraph.
(3) Let $P=\left[v_{1} v_{2} v_{3} v_{4} v_{5}\right]$ be the light 5-face, and $T=\left[v_{1} v_{2} u\right]$ be the 3-face adjacent to P. By Lemma 2(2), $P \cup T$ is a θ-subgraph of G, so $d(u) \geq 5$ by P5.
(4) Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ be the 6 -cycle of G with $d\left(v_{i}\right)=4$, where $i=1,2, \ldots, 6$. By P2 and P5, C has at least two chords. If C has a chord $v_{1} v_{3}$, then there exists a 5 -cycle $C_{1}=v_{1} v_{3} v_{4} v_{5} v_{6} v_{1}$ adjacent to 3 -cycle $T=v_{1} v_{2} v_{3} v_{1}$. By Lemma 2(2) and the fact that $d\left(v_{i}\right)=4$ for every $i=1,2, \ldots, 6, C_{1} \cup T$ is an $S \theta$, a contradiction. Next, assume that C has the chord $v_{1} v_{4}$. By the above discussion, we have $v_{1} v_{3} \notin E, v_{2} v_{4} \notin E$. That is, $v_{1} v_{2} v_{3} v_{4} v_{1}$ is an induced 4 -cycle with $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=4$, a contradiction to P2.

By Euler's formula $|V|-|E|+|F|=0$, we have

$$
\sum_{v \in V}(d(v)-4)+\sum_{f \in F}(d(f)-4)=-4(|V|-|E|+|F|)=0
$$

https://daneshyari.com/en/article/8902882

Download Persian Version:

https://daneshyari.com/article/8902882

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: hdanjun@zjnu.cn (D. Huang).

