Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A new sufficient condition for a toroidal graph to be 4-choosable

Jing Lv, Danjun Huang*

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

ARTICLE INFO

Article history: Received 23 September 2017 Received in revised form 26 March 2018 Accepted 29 June 2018

Keywords: Toroidal graph Choosability Cycle

ABSTRACT

A graph *G* is *k*-choosable if *G* can be properly colored whenever every vertex has a list of at least *k* available colors. In this paper, we will proof that if every 5-cycle of toroidal graph *G* is not adjacent simultaneously to 3-cycles and 4-cycles, then *G* is 4-choosable. This improves a result shown in Xu and Wu (2017), which stated that if every 5-cycle of planar graph *G* is not adjacent simultaneously to 3-cycles and 4-cycles, then *G* is 4-choosable. This improves a result shown in Xu and Wu (2017), which stated that if every 5-cycle of planar graph *G* is not adjacent simultaneously to 3-cycles and 4-cycles, then *G* is 4-choosable.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow from [2] for terminologies and notations not defined here.

A proper coloring of a graph *G* is an assignment *c* of integers to the vertices of *G* such that $c(u) \neq c(v)$ for any two adjacent vertices *u*, *v*. For a given list assignment $L = \{L(v) | v \in V(G)\}$, a graph *G* is *list L-colorable* if there exists a proper coloring *c* of the vertices such that $c(v) \in L(v)$ for all $v \in V(G)$. If *G* is list *L*-colorable for every list assignment *L* with $|L(v)| \geq k$ for all $v \in V(G)$, then *G* is *k*-choosable. The list chromatic number, denoted by $\chi_l(G)$, is the least integer *k* such that *G* is *k*-choosable.

A graph *G* is *toroidal* if it can be drawn on the torus so that the edges meet only at the vertices. For a graph *G* embedded into the totus, we use V(G), E(G), F(G) (or simple V, E, F) to denote its vertex set, edge set and face set, respectively. For a vertex $v \in V$, the *degree* of v, denoted by d(v), is the number of edges incident with v in *G*. For a face $f \in F$, the *degree* of f, denoted by d(f), is the number of edges incident with f in *G* (a cut-edge is counted twice). A vertex $v \in V$ is called a k-, k^+ -, or k^- -vertex if d(v) = k, $\geq k$, or $\leq k$, respectively. The notion of a k-, k^+ -, or k^- -face is similarly defined. The *minimum degree* of *G*, $\min\{d(v)|v \in V\}$, is denoted by $\delta(G)$. We say that two cycles (or faces) are *adjacent* if they share at least one edge. Two cycles (or faces) are *normally adjacent* if they share exactly one edge. A *chord* of a cycle *C* is an edge that connects two non-consecutive vertices of *C*. For convenience, we denote by $n_d(f)$ the number of *d*-vertices incident with the face *f*. Similarly, we can define $n_{d+}(f)$, $n_d-(f)$. A face *f* is called *light* if $n_4(f) = d(f)$.

The concept of list-coloring was introduced by Vizing [10] and independently by Erdős et al. [6]. Thomassen [9] proved that every planar graph is 5-choosable, whereas Voigt [11] presented an example of a planar graph which is not 4-choosable. It is proved in [1] that every toroidal graph *G* is 7-choosable, and $\chi_l(G) = 7$ if and only if $K_7 \subseteq G$. More recently, Cai et al. [3] proved that if *G* is a toroidal graph with no cycles of a fixed length *k*, then (1) $\chi_l(G) \leq 4$ if $k \in 3, 4, 5$; (2) $\chi_l(G) \leq 5$ if k = 6; and (3) $\chi_l(G) \leq 6$ if k = 7, and moreover $\chi_l(G) = 6$ if and only if $K_6 \subseteq G$. Luo [8] proved that every toroidal graph without intersecting triangles is 4-choosable. Xu and Wu [12] proved that every 5-cycle of planar graph *G* is not simultaneously

* Corresponding author.

E-mail address: hdanjun@zjnu.cn (D. Huang).

https://doi.org/10.1016/j.disc.2018.06.041 0012-365X/© 2018 Elsevier B.V. All rights reserved.

Perspective

adjacent to 3-cycles and 4-cycles, then G is 4-choosable. In this paper, we generalize the result in [12] to the toroidal graph by showing the following theorem:

Theorem 1. Let *G* be a toroidal graph. If every 5-cycles of *G* is not adjacent simultaneously to 3-cycles and 4-cycles, then *G* is 4-choosable.

2. Proof of Theorem 1

Arguing by contradiction, we assume that G = (V, E) is a counterexample to Theorem 1 having the fewest vertices. Embedding *G* into the torus, then *G* has the following properties:

P1 $\delta(G) \ge 4$ (see [7]).

P2 *G* does not contain any induced even cycle *C* such that each vertex of *C* is of degree 4 (see [5]). Since every 5-cycle of *G* is not adjacent simultaneously to 3-cycles and 4-cycles, P3 and P4 hold.

P3 Any 5-cycle has no chord.

P4 If two 3-faces are adjacent, then each other face adjacent to at least one of them is a 6⁺-face.

A θ -graph is a one consisting of two 3-vertices and three pairwise internally disjoint paths between the two 3-vertices. Clearly, a *k*-cycle with one internal chord is a special θ -graph. A θ -subgraph of *G* is an induced subgraph that is isomorphic to a θ -graph. Furthermore, we use $S\theta$ to denote such a special θ -subgraph of *G* in which one of the ends of the internal chord is a 5⁻-vertex and all of the other vertices are 4-vertices in *G*.

P5 *G* contains no $S\theta$ (see [4]).

Proof. Assume to the contrary that *G* has an $S\theta$. Let *H* be an $S\theta$ of *G* with the internal chord $e = x_0x$, where *x* is a 5^- -vertex. That is, $H = C + \{x_0x\}$. Let *L* be any list assignment of *G* with $|L(v)| \ge 4$ for all $v \in V(G)$. Deleting *H* from *G*, we get a smaller graph *G'*. By the minimality of *G*, *G'* is *L*-colorable. Let ϕ be an *L*-coloring of *G'*. We define a list assignment $L'(v) = L(v) \setminus \{\phi(v') | v'v \in E(G), v' \in V(G) \setminus V(H)\}$ for every $v \in V(H)$. By the definition of an $S\theta$, $|L'(x_0)| \ge 3$ and $|L'(v)| \ge 2$ for every $v \in V(H) \setminus \{x_0\}$. If, for every $v \in V(H) \setminus \{x_0\}$, we have $\{\alpha, \beta\} \subseteq L'(v)$. Then we can choose a color from $L'(x_0) \setminus \{\alpha, \beta\}$ to color x_0 , and using α and β color all other vertices of *H* alternatively in a cyclic order. Next, suppose that there are two adjacent vertices on the path $P = C \setminus \{x_0\}$, say *u* and *w*, such that $L'(u) \neq L'(w)$. Without loss of generality, assume that *u* is closer to x_0 than *w* on the cycle *C*. Now we can first choose a color from $L'(w) \setminus L'(u)$ to color *w*, then color all the remaining vertices of *C* in a chosen cyclic order such that *u* is colored finally, giving an *L*-coloring of *G*, a contradiction.

If a light 5-face $P = [v_1v_2 \cdots v_5]$ is adjacent to a 3-face $T = [v_1v_2u]$, then $u \notin V(P)$ by P3. We call u a source of P through T, and P a sink of u through T.

Lemma 2. (1) Every light 4-face must be adjacent to a 6⁺-face.

- (2) If a 5-cycle P is adjacent to a 3-cycle T, then they are normally adjacent and $P \cup T$ is a θ -subgraph.
- (3) Let u be a source of a light 5-face P. Then $d(u) \ge 5$.
- (4) G contains no 6-cycle C such that each vertex of C is of degree 4.

Proof. (1) Let $f = [v_1v_2v_3v_4]$ be the 4-face with $d(v_i) = 4$ for i = 1, 2, 3, 4. Then f must have a chord by P4, say $v_1v_3 \in E$. Hence, it is easy to check that each face adjacent to f is a 6⁺-face, since every 5-cycle of G is not adjacent simultaneously to 3-cycles and 4-cycles.

(2) It is clear that *P* and *T* are normally adjacent by P3. Next prove that $P \cup T$ is a θ -subgraph. Let $P = v_1v_2v_3v_4v_5v_1$ be the 5-cycle, and $T = v_1v_2uv_1$ be the 3-cycle adjacent to *P*. Then $C = uv_2v_3v_4v_5v_1u$ is a 6-cycle of *G*. If $P \cup T$ is not a θ -subgraph, then *C* has one more chord other than v_1v_2 . By P3, the second chord of *C* must be uv_3 or uv_4 . Hence, *G* has a 5-cycle $v_1v_2v_3v_4v_5v_1$ adjacent to 3-cycle $v_1uv_2v_1$ and 4-cycle $v_1uv_3v_2v_1$ or $v_1v_5v_4uv_1$, a contradiction. So $P \cup T$ is a θ -subgraph.

(3) Let $P = [v_1v_2v_3v_4v_5]$ be the light 5-face, and $T = [v_1v_2u]$ be the 3-face adjacent to P. By Lemma 2(2), $P \cup T$ is a θ -subgraph of G, so $d(u) \ge 5$ by P5.

(4) Let $C = v_1v_2v_3v_4v_5v_6v_1$ be the 6-cycle of G with $d(v_i) = 4$, where i = 1, 2, ..., 6. By P2 and P5, C has at least two chords. If C has a chord v_1v_3 , then there exists a 5-cycle $C_1 = v_1v_3v_4v_5v_6v_1$ adjacent to 3-cycle $T = v_1v_2v_3v_1$. By Lemma 2(2) and the fact that $d(v_i) = 4$ for every i = 1, 2, ..., 6, $C_1 \cup T$ is an $S\theta$, a contradiction. Next, assume that C has the chord v_1v_4 . By the above discussion, we have $v_1v_3 \notin E$, $v_2v_4 \notin E$. That is, $v_1v_2v_3v_4v_1$ is an induced 4-cycle with $d(v_1) = d(v_2) = d(v_3) = d(v_4) = 4$, a contradiction to P2.

By Euler's formula |V| - |E| + |F| = 0, we have

$$\sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (d(f) - 4) = -4(|V| - |E| + |F|) = 0.$$

Download English Version:

https://daneshyari.com/en/article/8902882

Download Persian Version:

https://daneshyari.com/article/8902882

Daneshyari.com