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a b s t r a c t

The concepts of a splicing machine and of an aparalled digraph are introduced. A splicing
machine is basically a means to uniquely obtain all circular sequences on a finite alphabet
by splicing together circular sequences froma small finite set of ‘‘generators’’. The existence
and uniqueness of the central object related to an aparallel digraph, the strong component,
is proved, and this strong component is shown to be the unique fixed point of a natural
operator defined on sets of vertices of the digraph. A digraph is shown to be a splicing
machine if and only if it is the strong component of an aparallel digraph. Motivation comes,
on the applied side, from the splicing of circular sequences on a finite alphabet and, on the
theoretical side, from the Banach fixed point theorem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite, directed graph on vertex set V . An edge in G, directed from vertex x to vertex y is denoted (x, y). With
respect to vertex x, the edge (x, y) is an out-edge. A walk is always a directed walk. The length of a walk p, if finite, is the
number of edges in p. A circuit is a closed walk. A cycle is a circuit with no repeated vertices (except the first and the last);
i.e., a cycle does not cross itself.

Themain objects in this paper are aparallel digraphs and splicingmachines, whose definitions are givenbelow. The concepts
of aparallel digraph and splicing machine are closely connected; the exact relationship is discussed in Section 3. Motivation
comes, on the applied side, from the splicing of circular sequences from a finite alphabet and, on the theoretical side, from
the Banach fixed point theorem. Although we do not claim a direct application, circular RNAs (circRNAs) are abundant and
are expressed in thousands of human genes. See [4] and references therein for an overview of the subject.

Modeling recombinant DNA behavior using formal language theory dates back at least to 1987 [8], andmany subsequent
papers have been written on the subject of such splicing systems, for example [5,6,10]. Although splicing of sequences is
common to both, our splicing machine is not substantially related to these splicing systems. In particular, formal languages
are not involved. From the other direction, fixed point theorems have been investigated via directed graphs; see for
example [1] and references therein. These results also are largely independent of those in this paper.

Fig. 1 shows a 2-colored (black and red) digraph with the property that each vertex has exactly one outgoing edge
colored black and exactly one outgoing edge colored red. (There are loops at vertices 1 and 8.) If the successive colors
along a walk p are (c1, c2, c3, . . . , cn), then we say that p has type (c1, c2, c3, . . . , cn). Consider a sequence of colors, say
C = (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0), where 0 stands for black and 1 for red. In the figure, the circuit with successive
vertices 2, 5, 3, 2, 1, 1, 5, 7, 4, 6, 3, 6, 7, 8, 4, 2 is of type C . In fact, this particular digraph has the following property: (1)
for any finite binary sequence C of colors, no matter how long, there is a circuit in the digraph of type C; (2) for any such
sequence C of colors, the circuit in the digraph of type C is unique; and (3) there are no ‘‘extra’’ edges in the digraph in the
sense that every edge appears in some circuit. Since every circuit in a digraph can be obtained by ‘‘splicing’’ cycles together,
we will refer to such a digraph as a splicing machine, defined formally in Definition 3. Basically, in a splicing machine, any
circular sequence of colors can be uniquely obtained by splicing together a subset of the finitely many cycle sequences.
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Fig. 1. A spicing machine. (The color red appears in the online version of this paper.)

Fig. 2. Small aparallel digraphs with two colors. (The color red appears in the online version of this paper.)

1.1. Aparallel digraphs

Definition 1. Let [N] = {1, 2, . . . ,N} for N ≥ 1, and call [N] the set of colors. A colored-digraph G = (V , E, c) is a finite
directed graph with vertex set V , edge set E, and edge coloring c : E → [N] such that every vertex has exactly N out-edges,
one out-edge of each color. Multiple edges and loops are allowed.

For a colored-digraph Gwhose edges are colored in [N] and a walk p = x0, x1, . . . , finite or infinite, the type of p, denoted
Cp, is defined as

Cp = (c(x0, x1), c(x1, x2), c(x2, x3) . . . ).

Given a sequence C = (j1, j2, . . .), finite or infinite, of colors, and a vertex x0 ∈ V , there is a unique walk, denoted pC (x0), of
type C . The same vertex may, of course, appear many times in pC (x0).

If an infinitewalk p has successive vertices x0, x1, x2, . . . and an infinitewalk p′ has successive vertices x′

0, x
′

1, x
′

2, . . . , then
we say that p and p′ are parallel if xi ̸= x′

i for all i ≥ 0. Let [N]
∗ denote the set of all finite sequences of colors and [N]

∞ the set
of all infinite sequences of colors. Given a sequence C ∈ [N]

∞, parallel walks pC (x0) = x0, x1, . . . and pC (y0) = y0, y1, . . . ,
with the same color sequence C ∈ [N]

∞, will be called C-parallel.

Definition 2. A colored-digraph G is called aparallel if G has no pair of C-parallel walks for all C ∈ [N]
∞. Such a colored-

digraph will be referred to as an aparallel digraph.

Note that, if G is aparallel, then it must be connected as an undirected graph. Four small aparallel digraphs withN = 2 are
shown in Fig. 2. Several infinite families of aparallel digraphs are provided in the examples below. The terminology ‘‘Cantor
set’’ and ‘‘Sierpinski triangle’’ in Examples 2 and 3 will be explained in Example 6 of Section 2. The examples below are also
revisited in Example 7 and Example 8.

Example 1 (Discrete Interval). Consider the following infinite family G(2k) for k = 1, 2, . . . , of 2-colored-digraphs. Let
V = {0, 1, 2, . . . , 2k−1}. The edges colored 1 are

(
n, ⌊ n

2⌋
)
and the edges colored 2 are

(
n, ⌊ n

2⌋ + k
)
for n = 0, 1, 2, . . . 2k−1.

The colored-digraph G(2k) is not, in general, aparallel. For example, it will follows from Lemma 1 in Section 2 that G(6) is not
an aparallel digraph because both p12(1) and p12(2) are cycles in G(6). However, if k is a power of 2, then G(2k) is aparallel.
This will be proved in Example 8 of Section 5. The aparallel digraph G(4) is the rightmost one in Fig. 2; digraph G(8) is the
one in Fig. 1.



Download English Version:

https://daneshyari.com/en/article/8902884

Download Persian Version:

https://daneshyari.com/article/8902884

Daneshyari.com

https://daneshyari.com/en/article/8902884
https://daneshyari.com/article/8902884
https://daneshyari.com

