The confirmation of a conjecture on disjoint cycles in a graph ${ }^{\text { }}$

Fuhong Ma, Jin Yan*
School of Mathematics, Shandong University, Jinan 250100, China

ARTICLE INFO

Article history:

Received 13 November 2017
Received in revised form 29 June 2018
Accepted 3 July 2018

Keywords:

Disjoint
Cycle
Degree sum

Abstract

Let t and k be two integers with $t \geq 5$ and $k \geq 2$. For a graph G and a vertex x of G, we use $d_{G}(x)$ to denote the degree of x in G. Define $\sigma_{t}(G)$ to be the minimum value of $\sum_{x \in X} d_{G}(x)$, where X is an independent set of G with $|X|=t$. This paper proves the following conjecture proposed by Gould et al. (2018). If G is a graph of sufficiently large order with $\sigma_{t}(G) \geq 2 k t-t+1$, then G contains k vertex-disjoint cycles.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers only finite undirected simple graphs. For a simple graph G, we denote by $V(G), E(G),|V(G)|$ and $e(G)$ the vertex set, the edge set, the order and the number of edges of G, respectively. Simply write $|V(G)|$ as $|G|$. A set of subgraphs of G is vertex-disjoint (or simply disjoint) if no two of them have any vertex in common. The independence number of G is $\alpha(G)$. For a vertex $x \in V(G)$, the neighborhood of x in G is denoted by $N_{G}(x)$, and $d_{G}(x)=\left|N_{G}(x)\right|$ is the degree of x in G. A complete graph of order n is denoted by K_{n}. The minimum degree of G is $\delta(G)$, and

$$
\sigma_{t}(G)=\min \left\{\sum_{x \in X} d_{G}(x): X \text { is an independent set of } G \text { with }|X|=t\right\} .
$$

We define $\sigma_{t}(G)=\infty$ if $\alpha(G) \leq t-1$. For two disjoint graphs G and H, we use $m G$ and $G \cup H$ to denote m copies of G and the union of G and H, respectively. The graph $G+H$ is got by joining each vertex of G to each vertex of H.

In this paper, we consider degree sum conditions and the existence of disjoint cycles. Finding proper conditions for disjoint cycles is an interesting problem. In 1962 [6], Erdős and Pósa found a condition concerning the number of edges to ensure the existence of two disjoint cycles. They proved that if G is a graph of order $n \geq 6$ with $e(G) \geq 3 n-6$, then G has two disjoint cycles or $G \cong K_{3}+(n-3) K_{1}$. In 1963 [4], Dirac gave a minimum degree condition for k disjoint triangles. He proved that for $k \geq 1$, any graph G with order $n \geq 3 k$ and $\delta(G) \geq(n+k) / 2$ contains k disjoint triangles. For general case, Corrádi and Hajnal proved a classical result.

Theorem 1 (Corrádi and Hajnal [3]). Suppose that $|G| \geq 3 k$ and $\delta(G) \geq 2 k$. Then G contains k disjoint cycles.
Justesen improved Theorem 1 as follows.
Theorem 2 (Justesen [10]). Suppose that $|G| \geq 3 k$ and $\sigma_{2}(G) \geq 4 k$. Then G contains k disjoint cycles.

[^0]The degree condition in Theorem 2 is not sharp. Later, Enomoto and Wang independently improved Theorem 2 and got a sharp degree bound.

Theorem 3 (Enomoto [5], Wang [12]). Suppose that $|G| \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$. Then G contains k disjoint cycles.
Fujita, Matsumura, Tsugaki and Yamashita [7] gave a sharp degree sum condition on three independent vertices by proving the following theorem.

Theorem 4 (Fujita et al. [7]). Suppose that $k \geq 2$ and $|G| \geq 3 k+2$. If $\sigma_{3}(G) \geq 6 k-2$, then G contains k disjoint cycles.
Recently, Gould, Hirohata and Keller proposed a more general conjecture.
Conjecture 1 (Gould et al. [8]). Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers k and t with $k \geq 2$ and $t \geq 4$, then G contains k disjoint cycles.

They showed that the degree sum condition of the conjecture is sharp by giving a counterexample $G=K_{2 k-1}+m K_{1}$, where m is an integer with $m \geq t$. The only independent vertices in G are those in $m K_{1}$. Each of these vertices has degree $2 k-1$. Thus $\sigma_{t}(G)=t(2 k-1)=2 k t-t$ for any $4 \leq t \leq m$. Apparently, G does not contain k disjoint cycles as any cycle must contain two vertices of $K_{2 k-1}$. In the same paper, they also verified that the case $t=4$ is correct, which adds evidence for this conjecture.

In this paper, we solve Conjecture 1 for $t \geq 5$ by proving the following theorem.
Theorem 5. Suppose that $k \geq 2, t \geq 5$ are two integers and $|G| \geq(2 t-1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$, then G contains k disjoint cycles.

Other related results about disjoint cycles in graphs and bipartite graphs have been studied, we refer the reader to see [2,9,11-15].

Remark. In the following, we introduce some useful notations. The number of components of G is $\omega(G)$. For a subgraph H of G and a vertex $x \in V(H)$, we denote $N_{H}(x)=N_{G}(x) \cap V(H)$ and $d_{H}(x)=\left|N_{H}(x)\right|$. If $S \subseteq H$, then define $d_{H}(S)=\sum_{x \in S} d_{H}(x)$ and $G[S]$ is the subgraph induced by S, and $G-S=G[V(G)-S]$. Let X, Y be two vertex-disjoint subsets or subgraphs of G, $E(X, Y)$ denotes the set of edges of G joining a vertex in X and a vertex in Y. If $X=\{x\}$, we denote $E(x, Y)$ instead of $E(\{x\}, Y)$. Let $e(X, Y)=|E(X, Y)|$ and $e(x, Y)=|E(x, Y)|$. Moreover, we write $X-x, X \cup x$ and $X \cap Y=x$ instead of $X-\{x\}, X \cup\{x\}$ and $X \cap Y=\{x\}$, respectively. We further define $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1} \geq \cdots \geq d_{n}$ to be the degree sequence from X to Y if there exist n vertices v_{1}, \ldots, v_{n} in X such that $e\left(v_{i}, Y\right) \geq d_{i}$ for each $1 \leq i \leq n$. A forest is a graph each of whose components is a tree. A leaf is a vertex of a forest whose degree is at most 1.

2. Lemmas

To prove Theorem 5, we make use of the following lemmas.
Let C_{1}, \ldots, C_{k} be k disjoint cycles of a graph G. If $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ are k disjoint cycles of G and $\left|\cup_{i=1}^{k} V\left(C_{i}^{\prime}\right)\right|<\left|\cup_{i=1}^{k} V\left(C_{i}\right)\right|$, then we say $\left\{C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right\}$ shorter cycles than $\left\{C_{1}, \ldots, C_{k}\right\}$. We also say $\left\{C_{1}, \ldots, C_{k}\right\}$ minimal if G does not contain k disjoint cycles $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ such that $\left|\cup_{i=1}^{k} V\left(C_{i}^{\prime}\right)\right|<\left|\cup_{i=1}^{k} V\left(C_{i}\right)\right|$.

Lemma 1 ([7]). Let k be a positive integer and let C_{1}, \ldots, C_{k} be k disjoint cycles of a graph G. If $\left\{C_{1}, \ldots, C_{k}\right\}$ is minimal, then $e\left(x, C_{i}\right) \leq 3$ for any $x \in V(G)-\cup_{i=1}^{k} V\left(C_{i}\right)$ and for any $1 \leq i \leq k$. Furthermore, $e\left(x, C_{i}\right)=3$ implies $\left|C_{i}\right|=3$ and $e\left(x, C_{i}\right)=2$ implies $\left|C_{i}\right| \leq 4$.

In what follows, we will use Lemmas 2 and 3 to prove Lemmas 4 and 5, respectively.
Lemma 2 ([7]). Suppose that F is a forest with at least two components and C is a triangle which is disjoint from F. Let x_{1}, x_{2}, x_{3} be leaves of F from at least two components. If $e\left(\left\{x_{1}, x_{2}, x_{3}\right\}, C\right) \geq 7$, then there are two disjoint cycles in $G[F \cup C]$ or there exists a triangle C^{\prime} in $G[F \cup C]$ such that $\omega\left(G[F \cup C]-C^{\prime}\right)<\omega(F)$.

Lemma 3 ([7]). Let C be a cycle and let T be a tree with three leaves x_{1}, x_{2}, x_{3}, where C and T are disjoint. If $e\left(\left\{x_{1}, x_{2}, x_{3}\right\}, C\right) \geq 7$, then there exist two disjoint cycles in $G[C \cup T]$ or there exists a cycle C^{\prime} in $G[C \cup T]$ such that $\left|C^{\prime}\right|<|C|$.

Lemma 4. Suppose that F is a forest with at least two components, C is a triangle disjoint from F and $t \geq 3$ is an integer. Let $x_{1}, x_{2}, \ldots, x_{t}$ be leaves of F from at least two components. If $e\left(\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}, C\right) \geq 2 t+1$, then there are two disjoint cycles in $G[F \cup C]$ or there exists a triangle C^{\prime} in $G[F \cup C]$ such that $\omega\left(G[F \cup C]-C^{\prime}\right)<\omega(F)$.

https://daneshyari.com/en/article/8902888

Download Persian Version:

https://daneshyari.com/article/8902888

Daneshyari.com

[^0]: This work is supported by NNSF of China (No. 11671232) and NSF of Shandong Province (No. ZR2017MA018).

 * Corresponding author.

 E-mail address: yanj@sdu.edu.cn (J. Yan).

