Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The confirmation of a conjecture on disjoint cycles in a graph*

Fuhong Ma, Jin Yan*

School of Mathematics, Shandong University, Jinan 250100, China

ARTICLE INFO

Article history: Received 13 November 2017 Received in revised form 29 June 2018 Accepted 3 July 2018 ABSTRACT

Let *t* and *k* be two integers with $t \ge 5$ and $k \ge 2$. For a graph *G* and a vertex *x* of *G*, we use $d_G(x)$ to denote the degree of *x* in *G*. Define $\sigma_t(G)$ to be the minimum value of $\sum_{x \in X} d_G(x)$, where *X* is an independent set of *G* with |X| = t. This paper proves the following conjecture proposed by Gould et al. (2018). If *G* is a graph of sufficiently large order with $\sigma_t(G) \ge 2kt - t + 1$, then *G* contains *k* vertex-disjoint cycles.

© 2018 Elsevier B.V. All rights reserved.

Keywords: Disjoint Cycle Degree sum

1. Introduction

This paper considers only finite undirected simple graphs. For a simple graph *G*, we denote by V(G), E(G), |V(G)| and e(G) the vertex set, the edge set, the order and the number of edges of *G*, respectively. Simply write |V(G)| as |G|. A set of subgraphs of *G* is *vertex-disjoint* (*or simply disjoint*) if no two of them have any vertex in common. The *independence number* of *G* is $\alpha(G)$. For a vertex $x \in V(G)$, the *neighborhood* of x in *G* is denoted by $N_G(x)$, and $d_G(x) = |N_G(x)|$ is the degree of x in *G*. A complete graph of order n is denoted by K_n . The minimum degree of *G* is $\delta(G)$, and

 $\sigma_t(G) = \min\{\sum_{x \in X} d_G(x) : X \text{ is an independent set of } G \text{ with } |X| = t\}.$

We define $\sigma_t(G) = \infty$ if $\alpha(G) \le t - 1$. For two disjoint graphs *G* and *H*, we use *mG* and $G \cup H$ to denote *m* copies of *G* and the union of *G* and *H*, respectively. The graph G + H is got by joining each vertex of *G* to each vertex of *H*.

In this paper, we consider degree sum conditions and the existence of disjoint cycles. Finding proper conditions for disjoint cycles is an interesting problem. In 1962 [6], Erdős and Pósa found a condition concerning the number of edges to ensure the existence of two disjoint cycles. They proved that if *G* is a graph of order $n \ge 6$ with $e(G) \ge 3n - 6$, then *G* has two disjoint cycles or $G \cong K_3 + (n - 3)K_1$. In 1963 [4], Dirac gave a minimum degree condition for *k* disjoint triangles. He proved that for $k \ge 1$, any graph *G* with order $n \ge 3k$ and $\delta(G) \ge (n + k)/2$ contains *k* disjoint triangles. For general case, Corrádi and Hajnal proved a classical result.

Theorem 1 (Corrádi and Hajnal [3]). Suppose that $|G| \ge 3k$ and $\delta(G) \ge 2k$. Then G contains k disjoint cycles.

Justesen improved Theorem 1 as follows.

Theorem 2 (Justesen [10]). Suppose that $|G| \ge 3k$ and $\sigma_2(G) \ge 4k$. Then G contains k disjoint cycles.

* Corresponding author.

https://doi.org/10.1016/j.disc.2018.07.003 0012-365X/© 2018 Elsevier B.V. All rights reserved.

lpha This work is supported by NNSF of China (No. 11671232) and NSF of Shandong Province (No. ZR2017MA018).

E-mail address: yanj@sdu.edu.cn (J. Yan).

The degree condition in Theorem 2 is not sharp. Later, Enomoto and Wang independently improved Theorem 2 and got a sharp degree bound.

Theorem 3 (Enomoto [5], Wang [12]). Suppose that $|G| \ge 3k$ and $\sigma_2(G) \ge 4k - 1$. Then G contains k disjoint cycles.

Fujita, Matsumura, Tsugaki and Yamashita [7] gave a sharp degree sum condition on three independent vertices by proving the following theorem.

Theorem 4 (Fujita et al. [7]). Suppose that $k \ge 2$ and $|G| \ge 3k + 2$. If $\sigma_3(G) \ge 6k - 2$, then G contains k disjoint cycles.

Recently, Gould, Hirohata and Keller proposed a more general conjecture.

Conjecture 1 (Gould et al. [8]). Let G be a graph of sufficiently large order. If $\sigma_t(G) \ge 2kt - t + 1$ for any two integers k and t with $k \ge 2$ and $t \ge 4$, then G contains k disjoint cycles.

They showed that the degree sum condition of the conjecture is sharp by giving a counterexample $G = K_{2k-1} + mK_1$, where *m* is an integer with $m \ge t$. The only independent vertices in *G* are those in mK_1 . Each of these vertices has degree 2k - 1. Thus $\sigma_t(G) = t(2k - 1) = 2kt - t$ for any $4 \le t \le m$. Apparently, *G* does not contain *k* disjoint cycles as any cycle must contain two vertices of K_{2k-1} . In the same paper, they also verified that the case t = 4 is correct, which adds evidence for this conjecture.

In this paper, we solve Conjecture 1 for $t \ge 5$ by proving the following theorem.

Theorem 5. Suppose that $k \ge 2$, $t \ge 5$ are two integers and $|G| \ge (2t - 1)k$. If $\sigma_t(G) \ge 2kt - t + 1$, then G contains k disjoint cycles.

Other related results about disjoint cycles in graphs and bipartite graphs have been studied, we refer the reader to see [2,9,11–15].

Remark. In the following, we introduce some useful notations. The number of components of *G* is $\omega(G)$. For a subgraph *H* of *G* and a vertex $x \in V(H)$, we denote $N_H(x) = N_G(x) \cap V(H)$ and $d_H(x) = |N_H(x)|$. If $S \subseteq H$, then define $d_H(S) = \sum_{x \in S} d_H(x)$ and *G*[*S*] is the subgraph induced by *S*, and G - S = G[V(G) - S]. Let *X*, *Y* be two vertex-disjoint subsets or subgraphs of *G*, *E*(*X*, *Y*) denotes the set of edges of *G* joining a vertex in *X* and a vertex in *Y*. If $X = \{x\}$, we denote *E*(*x*, *Y*) instead of *E*({*x*}, *Y*). Let e(X, Y) = |E(X, Y)| and e(x, Y) = |E(x, Y)|. Moreover, we write $X - x, X \cup x$ and $X \cap Y = x$ instead of $X - \{x\}, X \cup \{x\}$ and $X \cap Y = \{x\}$, respectively. We further define (d_1, \ldots, d_n) with $d_1 \ge \cdots \ge d_n$ to be the *degree sequence* from *X* to *Y* if there exist *n* vertices v_1, \ldots, v_n in *X* such that $e(v_i, Y) \ge d_i$ for each $1 \le i \le n$. A forest is a graph each of whose components is a tree. A leaf is a vertex of a forest whose degree is at most 1.

2. Lemmas

To prove Theorem 5, we make use of the following lemmas.

Let C_1, \ldots, C_k be *k* disjoint cycles of a graph *G*. If C'_1, \ldots, C'_k are *k* disjoint cycles of *G* and $|\bigcup_{i=1}^k V(C'_i)| < |\bigcup_{i=1}^k V(C_i)|$, then we say $\{C'_1, \ldots, C'_k\}$ shorter cycles than $\{C_1, \ldots, C_k\}$. We also say $\{C_1, \ldots, C_k\}$ minimal if *G* does not contain *k* disjoint cycles C'_1, \ldots, C'_k such that $|\bigcup_{i=1}^k V(C'_i)| < |\bigcup_{i=1}^k V(C_i)|$.

Lemma 1 ([7]). Let k be a positive integer and let C_1, \ldots, C_k be k disjoint cycles of a graph G. If $\{C_1, \ldots, C_k\}$ is minimal, then $e(x, C_i) \leq 3$ for any $x \in V(G) - \bigcup_{i=1}^k V(C_i)$ and for any $1 \leq i \leq k$. Furthermore, $e(x, C_i) = 3$ implies $|C_i| = 3$ and $e(x, C_i) = 2$ implies $|C_i| \leq 4$.

In what follows, we will use Lemmas 2 and 3 to prove Lemmas 4 and 5, respectively.

Lemma 2 ([7]). Suppose that *F* is a forest with at least two components and *C* is a triangle which is disjoint from *F*. Let x_1, x_2, x_3 be leaves of *F* from at least two components. If $e(\{x_1, x_2, x_3\}, C) \ge 7$, then there are two disjoint cycles in $G[F \cup C]$ or there exists a triangle *C'* in $G[F \cup C]$ such that $\omega(G[F \cup C] - C') < \omega(F)$.

Lemma 3 ([7]). Let *C* be a cycle and let *T* be a tree with three leaves x_1, x_2, x_3 , where *C* and *T* are disjoint. If $e(\{x_1, x_2, x_3\}, C) \ge 7$, then there exist two disjoint cycles in $G[C \cup T]$ or there exists a cycle *C'* in $G[C \cup T]$ such that |C'| < |C|.

Lemma 4. Suppose that *F* is a forest with at least two components, *C* is a triangle disjoint from *F* and $t \ge 3$ is an integer. Let $x_1, x_2, ..., x_t$ be leaves of *F* from at least two components. If $e(\{x_1, x_2, ..., x_t\}, C) \ge 2t + 1$, then there are two disjoint cycles in $G[F \cup C]$ or there exists a triangle *C'* in $G[F \cup C]$ such that $\omega(G[F \cup C] - C') < \omega(F)$.

Download English Version:

https://daneshyari.com/en/article/8902888

Download Persian Version:

https://daneshyari.com/article/8902888

Daneshyari.com