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a b s t r a c t

Given an infinite leafless tree drawn on the plane, we askwhether or not one can add edges
between the vertices of the tree obtaining a non-3-face-colorable graph. We formulate a
condition conjectured to be necessary and sufficient for this to be possible. We prove that
this condition is indeed necessary and sufficient for trees with maximal degree 3, and that
it is sufficient for general trees. In particular, we prove that every infinite plane graph with
a spanning binary tree is 3-face-colorable.

© 2018 Published by Elsevier B.V.

1. Introduction

The Four Color Theorem [1] states that every finite planar graph is both vertex colorable and face colorable with 4 colors.
(In this paper we are mainly concerned with face coloring.) Using the Erdős–de Bruijn Theorem [2], we can prove the same
for infinite planar graphs. However, coloring with 3 colors is not always possible and determining whether a given graph is
3-colorable is a hard task [3]. Our aim here is to study 3-face-coloring of planar graphs by means of a given spanning tree.

Two edges in a plane graph G are called G-adjacent if they have a common vertex and they are adjacent in the cyclic
order of the edges around this vertex. Two faces are called Touching if they have a common edge. A tree is called leafless if its
minimal degree is at least 2. A drawing of a graph on the plane is called diverging if there is no infinite sequence of vertices
drawn on points converging to a point on the plane. In this paper we restrict our discussion to leafless diverging trees. We
say that a plane graph G is called a fouring of a plane tree T if T is a spanning tree of G, i.e., G is obtained from T by adding
edges between existing vertices without changing the locations of the vertices or the drawing of the existing edges, and in
addition, G is not 3-face-colorable. If T has a fouring thenwe say that T is fourable. Otherwise, we say that T is unfourable. The
main aim of this paper is to characterize the leafless diverging plane trees that are fourable. For trees withmaximal degree 3,
we prove that a leafless diverging plane tree is fourable if and only if it has two vertices with degree 2 with an even distance
between them. The following definition attempts to generalize this property to trees with vertices of degree more than 3.

Let T be a leafless diverging plane tree and let S be a finite subtree of T . We say that S is a simply splittable subtree of T if

(1) Every vertex of S is in at most one edge of T which is not in S.
(2) For every vertex v of S, it is possible to write E(S) as the disjoint union of the edge sets of subtrees of S, in each of

which either v appears in exactly one edge, or v appears in exactly two edges, which are T -adjacent, and each of these
subtrees has an even number of edges. We refer to each of these subtrees as v-even.
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Note that a simply splittable subtree must have an even number of edges. We say that S is splittable if there exists a set
of edges X ⊂ E(S) such that S/X is a simply splittable subtree of T/X . (Where here / denotes edge contraction. In particular,
a simply splittable subtree is splittable, since X is allowed to be empty.)

Our main conjecture is

Conjecture 1. A leafless diverging plane tree is fourable if and only if it has a splittable subtree.

In this paper we prove the conjecture for trees with maximal degree 3

Theorem 1. Let T be a diverging plane tree, where all vertices have degree 2 or 3, then T is fourable if and only it has a splittable
subtree.

In addition, we prove one direction for general trees

Theorem 2. A diverging tree with a splittable subtree is fourable.

For the other direction, we prove a weaker result:

Theorem 3. Every fourable diverging plane tree T has a subtree S in which every vertex is in at most one edge not belonging to S.

2. Trees with maximal degree 3

In this sectionwe prove Theorem1. Throughout this sectionwe fix a diverging plane tree T , where all vertices have degree
2 or 3.

Lemma 1. The tree T has a splittable subtree if and only if T has two vertices with degree 2 of even distance between them.

Proof. If T has two vertices with degree 2 of even distance between them then clearly the path between them is simply
splittable.

Now let us prove the other direction. Let S be a splittable subtree of T . Then the leaves of S have degree 2 in T . If S has
three or more leaves then some two of them have even distance and we are done. Thus we may assume S has only two
leaves u and v, in other words S is a path between u and v. Wemay also assume that all vertices of T other than u and v have
degree 3.

We now need to show that S has an even number of edges. Since we assume that all vertices of T other than u and v have
degree 3, each vertex of S is in exactly one edge of T not in S. Therefore, any contraction of one or more edges of S will result
in a vertex which is in more than one edge of T not in S. This means that in fact S is simply splittable in T . Hence the number
of edges in S is even, and this is the distance between the two vertices u, v of degree 2. □

Theorem 4. If T has two vertices with degree 2 of even distance between them, then T is fourable.

Proof. Let x, y be two vertices degree 2 of even distance between them. We choose such vertices with minimal distance
between them. Let x = v0, v1, . . . , v2k = y be the path between x and y. By the minimality of k, all of v1, v2, . . . , v2k−1 have
degree 3, except possibly to one vertex vj where j is odd. If such a vertex exists, we start the construction of our fouring by
adding an edge between vj to some vertex outside the path. Now all of v1, . . . , v2k−1 have degree 3. Next we add the edges
of the path v0, v2, v4, . . . , v2k. Note that we can do this while keeping the planarity. We call the obtained graph G. For each
i = 0, . . . , k − 1, denote by Di the triangle between v2i, v2i+1 and v2i+2. For each i = 1, . . . , k − 1, the vertex v2i has degree
5 in G and therefore appears in 5 faces. Two of these faces are Di and Di−1. The other three faces are as follows:

• One face touches Di−1 but not Di. We denote it by Ai.
• One face touches both Di−1 and Di. We denote it by Bi.
• One face touches Di but not Di−1. We denote it by Ci.

Note that equalities, such as Ci−1 = Ai or Bi−1 = Bi etc. might hold. We also denote by C0 the face touching D0 other than
A1 and B1, and we denote by Ak, Bk the two faces in which v2k appears other than Dk−1.

Assume for contradiction that f is some 3-face-coloring of G. We shall prove by induction that f (Ai) = f (Bi) for every
i = 1, . . . , k. This will yield a contradiction since Ak and Bk are touching. The base of the induction follows from the fact
that each of A1 and B1 touches both C0 and D0. Now assume f (Ai−1) = f (Bi−1) = c for some i = 2, . . . , k and our aim is to
prove f (Ai) = f (Bi). If Bi ̸= Bi−1 and Ai ̸= Bi−1 then the vertex v2i cannot be in the boundary of Bi−1, and hence the only edge
at which Bi−1 touches Di−1 is {v2i−2, v2i−1}. This means that the two faces touching Di−1 at edges {v2i−1, v2i} and {v2i−2, v2i}

(not necessarily respectively) are Ai and Bi. This implies that each of Ai and Bi touches either Ai−1 or Bi−1 and thus both f (Ai)
and f (Bi) should be the color different than c and f (Di−1). If Bi = Bi−1 then Ai touches Ci−1. Hence f (Ai) should be the color
different than f (Ci−1) and f (Di−1), which is c . A similar argument holds where Ai = Bi−1. □
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