A condition for assured 3-face-colorability of infinite plane graphs with a given spanning tree

Eli Berger *, Yanay Soker
Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel

A R TICLE IN F O

Article history:

Received 2 November 2016
Received in revised form 4 April 2018
Accepted 5 April 2018

Keywords:

05C10
Planar graphs
3-coloring
Spanning trees

Abstract

Given an infinite leafless tree drawn on the plane, we ask whether or not one can add edges between the vertices of the tree obtaining a non-3-face-colorable graph. We formulate a condition conjectured to be necessary and sufficient for this to be possible. We prove that this condition is indeed necessary and sufficient for trees with maximal degree 3 , and that it is sufficient for general trees. In particular, we prove that every infinite plane graph with a spanning binary tree is 3 -face-colorable.

© 2018 Published by Elsevier B.V.

1. Introduction

The Four Color Theorem [1] states that every finite planar graph is both vertex colorable and face colorable with 4 colors. (In this paper we are mainly concerned with face coloring.) Using the Erdős-de Bruijn Theorem [2], we can prove the same for infinite planar graphs. However, coloring with 3 colors is not always possible and determining whether a given graph is 3-colorable is a hard task [3]. Our aim here is to study 3-face-coloring of planar graphs by means of a given spanning tree.

Two edges in a plane graph G are called G-adjacent if they have a common vertex and they are adjacent in the cyclic order of the edges around this vertex. Two faces are called Touching if they have a common edge. A tree is called leafless if its minimal degree is at least 2. A drawing of a graph on the plane is called diverging if there is no infinite sequence of vertices drawn on points converging to a point on the plane. In this paper we restrict our discussion to leafless diverging trees. We say that a plane graph G is called a fouring of a plane tree T if T is a spanning tree of G, i.e., G is obtained from T by adding edges between existing vertices without changing the locations of the vertices or the drawing of the existing edges, and in addition, G is not 3 -face-colorable. If T has a fouring then we say that T is fourable. Otherwise, we say that T is unfourable. The main aim of this paper is to characterize the leafless diverging plane trees that are fourable. For trees with maximal degree 3, we prove that a leafless diverging plane tree is fourable if and only if it has two vertices with degree 2 with an even distance between them. The following definition attempts to generalize this property to trees with vertices of degree more than 3.

Let T be a leafless diverging plane tree and let S be a finite subtree of T. We say that S is a simply splittable subtree of T if
(1) Every vertex of S is in at most one edge of T which is not in S.
(2) For every vertex v of S, it is possible to write $E(S)$ as the disjoint union of the edge sets of subtrees of S, in each of which either v appears in exactly one edge, or v appears in exactly two edges, which are T-adjacent, and each of these subtrees has an even number of edges. We refer to each of these subtrees as v-even.

[^0]Note that a simply splittable subtree must have an even number of edges. We say that S is splittable if there exists a set of edges $X \subset E(S)$ such that S / X is a simply splittable subtree of T / X. (Where here / denotes edge contraction. In particular, a simply splittable subtree is splittable, since X is allowed to be empty.)

Our main conjecture is
Conjecture 1. A leafless diverging plane tree is fourable if and only if it has a splittable subtree.
In this paper we prove the conjecture for trees with maximal degree 3
Theorem 1. Let T be a diverging plane tree, where all vertices have degree 2 or 3 , then T is fourable if and only it has a splittable subtree.

In addition, we prove one direction for general trees
Theorem 2. A diverging tree with a splittable subtree is fourable.
For the other direction, we prove a weaker result:
Theorem 3. Every fourable diverging plane tree T has a subtree S in which every vertex is in at most one edge not belonging to S.

2. Trees with maximal degree 3

In this section we prove Theorem 1. Throughout this section we fix a diverging plane tree T, where all vertices have degree 2 or 3 .

Lemma 1. The tree T has a splittable subtree if and only if T has two vertices with degree 2 of even distance between them.
Proof. If T has two vertices with degree 2 of even distance between them then clearly the path between them is simply splittable.

Now let us prove the other direction. Let S be a splittable subtree of T. Then the leaves of S have degree 2 in T. If S has three or more leaves then some two of them have even distance and we are done. Thus we may assume S has only two leaves u and v, in other words S is a path between u and v. We may also assume that all vertices of T other than u and v have degree 3.

We now need to show that S has an even number of edges. Since we assume that all vertices of T other than u and v have degree 3, each vertex of S is in exactly one edge of T not in S. Therefore, any contraction of one or more edges of S will result in a vertex which is in more than one edge of T not in S. This means that in fact S is simply splittable in T. Hence the number of edges in S is even, and this is the distance between the two vertices u, v of degree 2 .

Theorem 4. If T has two vertices with degree 2 of even distance between them, then T is fourable.
Proof. Let x, y be two vertices degree 2 of even distance between them. We choose such vertices with minimal distance between them. Let $x=v_{0}, v_{1}, \ldots, v_{2 k}=y$ be the path between x and y. By the minimality of k, all of $v_{1}, v_{2}, \ldots, v_{2 k-1}$ have degree 3 , except possibly to one vertex v_{j} where j is odd. If such a vertex exists, we start the construction of our fouring by adding an edge between v_{j} to some vertex outside the path. Now all of $v_{1}, \ldots, v_{2 k-1}$ have degree 3 . Next we add the edges of the path $v_{0}, v_{2}, v_{4}, \ldots, v_{2 k}$. Note that we can do this while keeping the planarity. We call the obtained graph G. For each $i=0, \ldots, k-1$, denote by D_{i} the triangle between $v_{2 i}, v_{2 i+1}$ and $v_{2 i+2}$. For each $i=1, \ldots, k-1$, the vertex $v_{2 i}$ has degree 5 in G and therefore appears in 5 faces. Two of these faces are D_{i} and D_{i-1}. The other three faces are as follows:

- One face touches D_{i-1} but not D_{i}. We denote it by A_{i}.
- One face touches both D_{i-1} and D_{i}. We denote it by B_{i}.
- One face touches D_{i} but not D_{i-1}. We denote it by C_{i}.

Note that equalities, such as $C_{i-1}=A_{i}$ or $B_{i-1}=B_{i}$ etc. might hold. We also denote by C_{0} the face touching D_{0} other than A_{1} and B_{1}, and we denote by A_{k}, B_{k} the two faces in which $v_{2 k}$ appears other than D_{k-1}.

Assume for contradiction that f is some 3-face-coloring of G. We shall prove by induction that $f\left(A_{i}\right)=f\left(B_{i}\right)$ for every $i=1, \ldots, k$. This will yield a contradiction since A_{k} and B_{k} are touching. The base of the induction follows from the fact that each of A_{1} and B_{1} touches both C_{0} and D_{0}. Now assume $f\left(A_{i-1}\right)=f\left(B_{i-1}\right)=c$ for some $i=2, \ldots, k$ and our aim is to prove $f\left(A_{i}\right)=f\left(B_{i}\right)$. If $B_{i} \neq B_{i-1}$ and $A_{i} \neq B_{i-1}$ then the vertex $v_{2 i}$ cannot be in the boundary of B_{i-1}, and hence the only edge at which B_{i-1} touches D_{i-1} is $\left\{v_{2 i-2}, v_{2 i-1}\right\}$. This means that the two faces touching D_{i-1} at edges $\left\{v_{2 i-1}, v_{2 i}\right\}$ and $\left\{v_{2 i-2}, v_{2 i}\right\}$ (not necessarily respectively) are A_{i} and B_{i}. This implies that each of A_{i} and B_{i} touches either A_{i-1} or B_{i-1} and thus both $f\left(A_{i}\right)$ and $f\left(B_{i}\right)$ should be the color different than c and $f\left(D_{i-1}\right)$. If $B_{i}=B_{i-1}$ then A_{i} touches C_{i-1}. Hence $f\left(A_{i}\right)$ should be the color different than $f\left(C_{i-1}\right)$ and $f\left(D_{i-1}\right)$, which is c. A similar argument holds where $A_{i}=B_{i-1}$.

https://daneshyari.com/en/article/8902892

Download Persian Version:

https://daneshyari.com/article/8902892

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: berger.haifa@gmail.com (E. Berger).

