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a b s t r a c t

For a graph G anda, b ∈ V (G), the shortest path reconfiguration graph of G with respect to
a andb is denoted by S(G, a, b). The vertex set of S(G, a, b) is the set of all shortest paths
between a andb in G. Two vertices in V (S(G, a, b)) are adjacent, if their corresponding
paths in G differ by exactly one vertex. This paper examines the properties of shortest path
graphs. Results include establishing classes of graphs that appear as shortest path graphs,
decompositions and sums involving shortest path graphs, and the complete classification of
shortest path graphswith girth 5 or greater.We include an infinite family ofwell structured
examples, showing that the shortest path graph of a grid graph is an induced subgraph of
a lattice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many important problems have more than one feasible solution. The reconfiguration question is to determine whether
it is possible to transform one feasible solution to a problem into a target feasible solution in a step-by-step manner (via
a reconfiguration rule), such that each intermediate solution is also feasible. For example, there may be many feasible
solutions for how to a properly vertex color a specific graph (proper colorings are the feasible solutions). A proper coloring
reconfiguration problem is: Given a graph G and two proper colorings C1 and C2, is it possible to transform C1 to C2 by re-
coloring one vertex at a time (the reconfiguration rule) while keeping the coloring proper at each step? Such transformations
can be studied via the reconfiguration graph, in which the vertices represent the feasible solutions and there is an edge
between two verticeswhen it is possible to get fromone feasible solution to another in one application of the reconfiguration
rule. Reconfiguration is a very lively area of current study. Recent papers about reconfiguration include some on vertex
coloring [3,5–8], independent sets [15,16,18], matchings [16], list-colorings [17], matroid bases [16], and subsets of a
(multi)set of numbers [10], among others. This paper concerns the reconfiguration of shortest paths in a graph.

Definition 1. Let G be a graph with distinct vertices a and b. The shortest path graph of Gwith respect to a and b is the graph
S(G, a, b) in which every vertexU corresponds to a shortest path in G between a and b, and two vertices U,W ∈ V (S(G, a, b))
are adjacent if and only if their corresponding paths in G differ in exactly one vertex.1
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Fig. 1. Base graph G (left) with several shortest path graphs (right).

One fundamental question in reconfiguration is to determine the computational complexity of determining if two feasible
solutions can be reconfigured from one to another andmany papers in this area focused on that, see for example [4,5,16,18].
The graph theory community has expanded this topic to examine the structure of the reconfiguration graph inmany contexts,
including reconfiguration for vertex coloring [2,9,11], and domination [14]. Reconfiguration of shortest paths is unusual
from a computational standpoint because, although the complexity of finding a shortest path in a graph is polynomial, the
corresponding reconfiguration problem is PSPACE complete [18]. With this as background, the focus of our work is on the
structure of shortest path graphs, rather than on algorithms. Our main goal is to understand which graphs occur as shortest
path graphs.

Some definitions and notations are provided in Section 2. Section 3 contains some useful properties and examples. In
particular, we show that paths and complete graphs are shortest path graphs. In Section 4 we show that the family of
shortest path graphs is closed under disjoint union and under Cartesian products.We establish a decomposition result which
suggests that, typically, 4-cycles are prevalent in shortest path graphs. Thus, we would expect the structure of shortest path
graphs containing no 4-cycles to be rather simple. This is substantiated in Section 5, where we give a remarkably simple
characterization of shortest path graphs with girth 5 or greater. In the process of establishing this characterization, we
show that the presence of an induced claw or k-cycle implies that other, specific, induced subgraphs must be present. As a
consequence, we determine precisely which cycles are shortest path graphs; that the claw, by itself, is not a shortest path
graph; and that a tree cannot be a shortest path graph unless it is a path.

In contrast to the simple structure of shortest path graphs of girth 5 or greater, those of smaller girth exhibit a rich
structure. We begin the exploration of such graphs in Section 6 by considering a specific family of these that showcase some
of the difficulty of characterizing shortest path graphs in general. Specifically, we establish that the shortest path graph
of a grid graph is an induced subgraph of the lattice. A particularly nice special case is that the shortest path graph of the
hypercube Qn with respect to two diametric vertices is a Cayley graph on the symmetric group Sn.

2. Preliminaries

We consider only simple graphs, G, with vertex set V (G) and edge set E(G). When two vertices x, y are adjacent we denote
this as x ∼ y. Let G be a graph with distinct vertices a and b. A shortest a, b-path in G is a path between a and b of length
dG(a, b). When it causes no confusion, we write d(a, b) to mean dG(a, b). We often refer to a shortest path as a geodesic and
to a shortest a, b-path as an a, b-geodesic. Note that any subpath of a geodesic is a geodesic.

If the paths of G corresponding to two adjacent vertices U,W in S(G, a, b) are av1 · · · vi−1vivi+1 · · · vpb and av1 · · · vi−1
v′

ivi+1 · · · vpb, we say that U and W differ in the ith index, or that i is the difference index of the edge UW . We call the graph
G the base graph of S(G, a, b), and we say that a graph H is a shortest path graph, if there exists a graph G with a, b ∈ V (G)
such that S(G, a, b) is isomorphic to H , denoted as S(G, a, b) ∼= H . Several examples are given in Fig. 1. With a slight abuse
of notation, a label for a vertex in the shortest path graph will often also represent the corresponding path in its base graph.
To avoid confusion between vertices in G and vertices in S(G, a, b), throughout this paper, we will use lower case letters to
denote vertices in the base graph, and upper case letters to denote vertices in S(G, a, b).

It can easily be seen that several base graphs can have the same shortest path graph. For example, if e ∈ E(G) and e is an
edge not in any a, b-geodesic, then S(G, a, b) ∼= S(G \ e, a, b). To this end, we define the reduced graph, (G, a, b), to be the
graph obtained from G by deleting any edge or vertex that does not occur in any a, b-geodesic, and contracting any edge that
occurs in all a, b-geodesics. If the reduced graph (G, a, b) is again G, then G is called a reduced graphwith respect to a, b. We
may omit the reference to a, bwhen it is clear from context.

We conclude this section with a review of some basic definitions. If G1 and G2 are graphs, then G1 ∪ G2 is defined to be
the graph whose vertex set is V (G1) ∪ V (G2) and whose edge set is E(G1) ∪ E(G2). When V (G1) ∩ V (G2) = ∅ we say that G1
and G2 are disjoint, and refer to G1 ∪ G2 as the disjoint union of G1 and G2. For two graphs G1 and G2, the Cartesian product
G1 □ G2 is a graph with vertex set V (G1) × V (G2) and edge set {(u1, u2)(v1, v2) : ui, vi ∈ V (Gi) for i ∈ {1, 2} and either u1 =

v1 and u2 ∼ v2, or u2 = v2 and u1 ∼ v1}. If U1 is a v0, vℓ-path and U2 is a vℓ, vm-path, where U1 and U2 have only one vertex
in common, namely vℓ, then the concatenation of U1 and U2 is the v0, vm-path U1 ◦ U2 = v0v1 . . . vℓvℓ+1 . . . vm. A hypercube
of dimension n, denoted Qn, is the graph formed by labeling a vertex with each of the 2n binary sequences of length n, and
joining two vertices with an edge if and only if their sequences differ in exactly one position.
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