Not-all-equal 3-SAT and 2-colorings of 4-regular 4-uniform hypergraphs

Michael A. Henning ${ }^{\text {a,* }}$, Anders Yeo ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa
${ }^{\text {b }}$ Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

ARTICLE INFO

Article history:

Received 13 June 2017
Received in revised form 3 May 2018
Accepted 5 May 2018
Available online 29 May 2018

Keywords:

Hypergraphs
Bipartite
2-colorable
Transversal
Free vertex
NAE-3-SAT

Abstract

In this paper, we continue our study of 2-colorings in hypergraphs (see, Henning and Yeo, 2013). A hypergraph is 2-colorable if there is a 2-coloring of the vertices with no monochromatic hyperedge. It is known (see Thomassen, 1992) that every 4-uniform 4-regular hypergraph is 2-colorable. Our main result in this paper is a strengthening of this result. For this purpose, we define a vertex in a hypergraph H to be a free vertex in H if we can 2-color $V(H) \backslash\{v\}$ such that every hyperedge in H contains vertices of both colors (where v has no color). We prove that every 4-uniform 4-regular hypergraph has a free vertex. This proves a conjecture in Henning and Yeo (2015). Our proofs use a new result on not-all-equal 3-SAT which is also proved in this paper and is of interest in its own right.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we continue the study of 2-colorings in hypergraphs. We adopt the notation and terminology from [5,6]. A hypergraph $H=(V, E)$ is a finite set $V=V(H)$ of elements, called vertices, together with a finite multiset $E=E(H)$ of arbitrary subsets of V, called hyperedges or simply edges. A k-edge in H is an edge of size k in H. The hypergraph H is k-uniform if every edge of H is a k-edge. The degree of a vertex v in H, denoted $d_{H}(v)$ or simply by $d(v)$ if H is clear from the context, is the number of edges of H which contain v. The hypergraph H is k-regular if every vertex has degree k in H. For $k \geq 2$, let \mathcal{H}_{k} denote the class of all k-uniform k-regular hypergraphs. The class \mathcal{H}_{k} has been studied, both in the context of solving problems on total domination as well as in its own right, see for example [1,3-7,13].

A hypergraph H is 2-colorable if there is a 2-coloring of the vertices with no monochromatic hyperedge. Equivalently, H is 2-colorable if it is bipartite; that is, its vertex set can be partitioned into two sets such that every hyperedge intersects both partite sets. Alon and Bregman [1] established the following result.

Theorem 1 (Alon, Bregman [1]). Every hypergraph in \mathcal{H}_{k} is 2-colorable, provided $k \geq 8$.
Thomassen [15] showed that the Alon-Bregman result in Theorem 1 holds for all $k \geq 4$.
Theorem 2 (Thomassen [15]). Every hypergraph in \mathcal{H}_{k} is 2 -colorable, provided $k \geq 4$.
As remarked by Alon and Bregman [1] the result is not true when $k=3$, as may be seen by considering the Fano plane. Sufficient conditions for the existence of a 2 -coloring in k-uniform hypergraphs are given, for example, by Radhakrishnan

[^0]and Srinivasan [11] and Vishwanathan [16]. For related results, see the papers by Alon and Tarsi [2], Seymour [12] and Thomassen [14].

A set X of vertices in a hypergraph H is a free set in H if we can 2-color $V(H) \backslash X$ such that every edge in H contains vertices of both colors (where the vertices in X are not colored). A vertex is a free vertex in H if we can 2-color $V(H) \backslash\{v\}$ such that every hyperedge in H contains vertices of both colors (where v has no color). In [6] it is conjectured that every hypergraph $H \in \mathcal{H}_{k}$, with $k \geq 4$, has a free set of size $k-3$. Further, if the conjecture is true, then the bound $k-3$ cannot be improved for any $k \geq 4$, due to the complete k-uniform hypergraph of order $k+1$, as such a hypergraph needs two vertices of each color to ensure every edge has vertices of both colors. The conjecture is proved to hold for $k \in\{5,6,7,8\}$. The case when $k=4$ turned out to be more difficult than the cases when $k \in\{5,6,7,8\}$ and was conjectured separately in [6].

Conjecture 1 ([6]). Every 4-regular 4-uniform hypergraph contains a free vertex.

2. Terminology and definitions

For an edge e in a hypergraph H, we denote by $H-e$ the hypergraph obtained from H by deleting the edge e. Two vertices x and y of H are adjacent if there is an edge e of H such that $\{x, y\} \subseteq e$. Further, x and y are connected if there is a sequence $x=v_{0}, v_{1}, v_{2} \ldots, v_{k}=y$ of vertices of H in which v_{i-1} is adjacent to v_{i} for $i=1,2, \ldots, k$. A connected hypergraph is a hypergraph in which every pair of vertices are connected. A component of a hypergraph H is a maximal connected subhypergraph of H. In particular, we note that a component of H is by definition connected.

A subset T of vertices in a hypergraph H is a transversal in H if T has a nonempty intersection with every edge of H. In the language of transversals, a vertex v is a free vertex in a hypergraph H if H contains two vertex disjoint transversals, neither of which contain the vertex v. Transversals in 4-uniform hypergraphs are well studied (see, for example, [6,9,13]).

In order to prove Conjecture 1, we use a connection between an instance of not-all-equal 3-SAT (NAE-3-SAT) and a 3 -uniform hypergraph. In order to state this connection we require some further terminology.

Definition 1. An instance, I, of 3-SAT contains a set of variables, $V(I)$, and a set of clauses, $C(I)$. Each clause contains exactly three literals, which are either a variable, $v \in V(I)$, or the negation of a variable, \bar{v}, where $v \in V(I)$. A clause, $c \in C(I)$, is satisfied if one of the literals in it is true. That is, the clause c is satisfied if there exists $v \in V(I)$ that belongs to c and $v=$ True or \bar{v} belongs to c and $v=$ False. The instance I is satisfied if there is a truth assignment to the variables such that all clauses are satisfied.

Definition 2. An instance of NAE-3-SAT is equivalent to 3-SAT, except that we require all clauses to contain a false literal as well as a true one. A clause that contains both a true and false literal we call nae-satisfiable. If there is a truth assignment to the variables such that every clause in the instance I is (simultaneously) nae-satisfiable, we say that I is nae-satisfiable. An instance of NAE-3-SAT is non-trivial if it contains at least one variable.

We remark that NAE-3-SAT is a known decision problem in theoretical computer science, and its NP-completeness can be proven by a reduction from 3-SAT as shown by Moore and Mertens [10]. We furthermore need the following definitions.

Definition 3. Given an instance I of NAE-3-SAT, we define the associated graph G_{I} to be the graph whose vertices correspond to the variables in the set $V(I)$ and where an edge joins two vertices in G_{I} if the associated variables (either in negated or unnegated form) appear in the same clause in I.

Let I be an instance of NAE-3-SAT. We call the instance I connected if one cannot partition the variables $V(I)$ into nonempty sets V_{1} and V_{2} such that no clause contains variables from V_{1} and V_{2}. In other words, the graph G_{I} associated with I is connected.

A component of a NAE-3-SAT instance I is a maximal connected sub-instance of I. That is, the components of I correspond precisely to the components of the graph G_{I} associated with I.

A variable, $v \in V(I)$, is free if I is nae-satisfiable even if we do not assign any truth value to v. That is, every clause in I contains a true and a false literal, even without considering literals involving v.

The degree of a variable $v \in V(I)$, is the number of clauses containing v or \bar{v}, and is denoted by $\operatorname{deg}_{I}(v)$. If the instance I is clear from the context, we simply write $\operatorname{deg}(v)$ rather than $\operatorname{deg}_{I}(v)$.

We are now in a position to define a connection between an instance of NAE-3-SAT and a 3-uniform hypergraph as follows.

Definition 4. If H is a 3-uniform hypergraph, we create a NAE-3-SAT instance I_{H} as follows. Let $V\left(I_{H}\right)=V(H)$ and for each edge $e \in H$ add a clause to I_{H} with the same vertices/variables in non-negated form. We call I_{H} the NAE-3-SAT instance corresponding to H. Note that the instance I_{H} is nae-satisfiable if and only if H is bipartite. In fact the partite sets in the bipartition correspond to the truth values true and false.

Throughout this paper, we use the standard notation $[k]=\{1,2, \ldots, k\}$.

https://daneshyari.com/en/article/8902929

Download Persian Version:

https://daneshyari.com/article/8902929

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mahenning@uj.ac.za (M.A. Henning), andersyeo@gmail.com (A. Yeo).

