Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Not-all-equal 3-SAT and 2-colorings of 4-regular 4-uniform hypergraphs

Michael A. Henning^{a,*}, Anders Yeo^{a,b}

^a Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa
^b Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

ARTICLE INFO

Article history: Received 13 June 2017 Received in revised form 3 May 2018 Accepted 5 May 2018 Available online 29 May 2018

Keywords: Hypergraphs Bipartite 2-colorable Transversal Free vertex NAE-3-SAT

1. Introduction

In this paper, we continue the study of 2-colorings in hypergraphs. We adopt the notation and terminology from [5,6]. A hypergraph H = (V, E) is a finite set V = V(H) of elements, called *vertices*, together with a finite multiset E = E(H) of arbitrary subsets of V, called hyperedges or simply edges. A k-edge in H is an edge of size k in H. The hypergraph H is k-uniform if every edge of H is a k-edge. The degree of a vertex v in H, denoted $d_H(v)$ or simply by d(v) if H is clear from the context, is the number of edges of H which contain v. The hypergraph H is k-regular if every vertex has degree k in H. For $k \ge 2$, let \mathcal{H}_k denote the class of all k-uniform k-regular hypergraphs. The class \mathcal{H}_k has been studied, both in the context of solving problems on total domination as well as in its own right, see for example [1,3–7,13].

A hypergraph *H* is 2-*colorable* if there is a 2-coloring of the vertices with no monochromatic hyperedge. Equivalently, *H* is 2-colorable if it is *bipartite*; that is, its vertex set can be partitioned into two sets such that every hyperedge intersects both partite sets. Alon and Bregman [1] established the following result.

Theorem 1 (Alon, Bregman [1]). Every hypergraph in \mathcal{H}_k is 2-colorable, provided $k \ge 8$.

Thomassen [15] showed that the Alon–Bregman result in Theorem 1 holds for all $k \ge 4$.

Theorem 2 (Thomassen [15]). Every hypergraph in \mathcal{H}_k is 2-colorable, provided $k \ge 4$.

As remarked by Alon and Bregman [1] the result is not true when k = 3, as may be seen by considering the Fano plane. Sufficient conditions for the existence of a 2-coloring in k-uniform hypergraphs are given, for example, by Radhakrishnan

* Corresponding author.

https://doi.org/10.1016/j.disc.2018.05.002 0012-365X/© 2018 Elsevier B.V. All rights reserved.

A B S T R A C T

In this paper, we continue our study of 2-colorings in hypergraphs (see, Henning and Yeo, 2013). A hypergraph is 2-colorable if there is a 2-coloring of the vertices with no monochromatic hyperedge. It is known (see Thomassen, 1992) that every 4-uniform 4-regular hypergraph is 2-colorable. Our main result in this paper is a strengthening of this result. For this purpose, we define a vertex in a hypergraph *H* to be a free vertex in *H* if we can 2-color $V(H) \setminus \{v\}$ such that every hyperedge in *H* contains vertices of both colors (where *v* has no color). We prove that every 4-uniform 4-regular hypergraph has a free vertex. This proves a conjecture in Henning and Yeo (2015). Our proofs use a new result on not-all-equal 3-SAT which is also proved in this paper and is of interest in its own right. © 2018 Elsevier B.V. All rights reserved.

E-mail addresses: mahenning@uj.ac.za (M.A. Henning), andersyeo@gmail.com (A. Yeo).

and Srinivasan [11] and Vishwanathan [16]. For related results, see the papers by Alon and Tarsi [2], Seymour [12] and Thomassen [14].

A set *X* of vertices in a hypergraph *H* is a *free set* in *H* if we can 2-color $V(H) \setminus X$ such that every edge in *H* contains vertices of both colors (where the vertices in *X* are not colored). A vertex is a *free vertex* in *H* if we can 2-color $V(H) \setminus \{v\}$ such that every hyperedge in *H* contains vertices of both colors (where *v* has no color). In [6] it is conjectured that every hypergraph $H \in \mathcal{H}_k$, with $k \ge 4$, has a free set of size k - 3. Further, if the conjecture is true, then the bound k - 3 cannot be improved for any $k \ge 4$, due to the complete *k*-uniform hypergraph of order k + 1, as such a hypergraph needs two vertices of each color to ensure every edge has vertices of both colors. The conjecture is proved to hold for $k \in \{5, 6, 7, 8\}$. The case when k = 4 turned out to be more difficult than the cases when $k \in \{5, 6, 7, 8\}$ and was conjectured separately in [6].

Conjecture 1 ([6]). Every 4-regular 4-uniform hypergraph contains a free vertex.

2. Terminology and definitions

For an edge e in a hypergraph H, we denote by H - e the hypergraph obtained from H by deleting the edge e. Two vertices x and y of H are *adjacent* if there is an edge e of H such that $\{x, y\} \subseteq e$. Further, x and y are *connected* if there is a sequence $x = v_0, v_1, v_2 \dots, v_k = y$ of vertices of H in which v_{i-1} is adjacent to v_i for $i = 1, 2, \dots, k$. A *connected* hypergraph is a hypergraph in which every pair of vertices are connected. A *component* of a hypergraph H is a maximal connected subhypergraph of H. In particular, we note that a component of H is by definition connected.

A subset *T* of vertices in a hypergraph *H* is a *transversal* in *H* if *T* has a nonempty intersection with every edge of *H*. In the language of transversals, a vertex *v* is a free vertex in a hypergraph *H* if *H* contains two vertex disjoint transversals, neither of which contain the vertex *v*. Transversals in 4-uniform hypergraphs are well studied (see, for example, [6,9,13]).

In order to prove Conjecture 1, we use a connection between an instance of not-all-equal 3-SAT (NAE-3-SAT) and a 3-uniform hypergraph. In order to state this connection we require some further terminology.

Definition 1. An instance, *I*, of 3-SAT contains a set of variables, V(I), and a set of clauses, C(I). Each clause contains exactly three literals, which are either a variable, $v \in V(I)$, or the negation of a variable, \overline{v} , where $v \in V(I)$. A clause, $c \in C(I)$, is satisfied if one of the literals in it is true. That is, the clause *c* is satisfied if there exists $v \in V(I)$ that belongs to *c* and v = True or \overline{v} belongs to *c* and v = False. The instance *I* is satisfied if there is a truth assignment to the variables such that all clauses are satisfied.

Definition 2. An instance of NAE-3-SAT is equivalent to 3-SAT, except that we require all clauses to contain a false literal as well as a true one. A clause that contains both a true and false literal we call *nae-satisfiable*. If there is a truth assignment to the variables such that every clause in the instance *I* is (simultaneously) nae-satisfiable, we say that *I* is *nae-satisfiable*. An instance of NAE-3-SAT is non-trivial if it contains at least one variable.

We remark that NAE-3-SAT is a known decision problem in theoretical computer science, and its NP-completeness can be proven by a reduction from 3-SAT as shown by Moore and Mertens [10]. We furthermore need the following definitions.

Definition 3. Given an instance *I* of NAE-3-SAT, we define the **associated graph** G_I to be the graph whose vertices correspond to the variables in the set V(I) and where an edge joins two vertices in G_I if the associated variables (either in negated or unnegated form) appear in the same clause in *I*.

Let *I* be an instance of NAE-3-SAT. We call the instance *I* **connected** if one cannot partition the variables V(I) into nonempty sets V_1 and V_2 such that no clause contains variables from V_1 and V_2 . In other words, the graph G_I associated with *I* is connected.

A **component** of a NAE-3-SAT instance *I* is a maximal connected sub-instance of *I*. That is, the components of *I* correspond precisely to the components of the graph G_I associated with *I*.

A variable, $v \in V(I)$, is **free** if *I* is nae-satisfiable even if we do not assign any truth value to *v*. That is, every clause in *I* contains a true and a false literal, even without considering literals involving *v*.

The **degree** of a variable $v \in V(I)$, is the number of clauses containing v or \overline{v} , and is denoted by $\deg_I(v)$. If the instance I is clear from the context, we simply write $\deg(v)$ rather than $\deg_I(v)$.

We are now in a position to define a connection between an instance of NAE-3-SAT and a 3-uniform hypergraph as follows.

Definition 4. If *H* is a 3-uniform hypergraph, we create a NAE-3-SAT instance I_H as follows. Let $V(I_H) = V(H)$ and for each edge $e \in H$ add a clause to I_H with the same vertices/variables in non-negated form. We call I_H the NAE-3-SAT instance corresponding to *H*. Note that the instance I_H is nae-satisfiable if and only if *H* is bipartite. In fact the partite sets in the bipartition correspond to the truth values true and false.

Throughout this paper, we use the standard notation $[k] = \{1, 2, ..., k\}$.

Download English Version:

https://daneshyari.com/en/article/8902929

Download Persian Version:

https://daneshyari.com/article/8902929

Daneshyari.com