Balanced diagonals in frequency squares

Nicholas J. Cavenagh ${ }^{\text {a,* }}$, Adam Mammoliti ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia

ARTICLE INFO

Article history:

Received 21 February 2018
Received in revised form 28 April 2018
Accepted 28 April 2018
Available online 29 May 2018

MSC:

05B15
05C15
Keywords:
Frequency square
Latin square
Ryser's conjecture
Transversal

Abstract

We say that a diagonal in an array is λ-balanced if each entry occurs λ times. Let L be a frequency square of type $F(n ; \lambda)$; that is, an $n \times n$ array in which each entry from $\{1,2, \ldots, m=n / \lambda\}$ occurs λ times per row and λ times per column. We show that if $m \leqslant 3$, L contains a λ-balanced diagonal, with only one exception up to equivalence when $m=2$. We give partial results for $m \geqslant 4$ and suggest a generalization of Ryser's conjecture, that every Latin square of odd order has a transversal. Our method relies on first identifying a small substructure with the frequency square that facilitates the task of locating a balanced diagonal in the entire array.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In what follows, rows and columns of an $n \times n$ array L are each indexed by $N(n)=\{1,2, \ldots, n\}$, with $L_{i, j}$ denoting the entry in cell (i, j). We sometimes consider an array L to be a set of ordered triples $L=\left\{\left(i, j ; L_{i, j}\right)\right\}$ so that the notion of a subset of an array is precise. A subarray of L is any array induced by subsets of the rows and columns of L; thus the rows and columns in a subarray need not be adjacent.

A frequency square or F-square L of type $F\left(n ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ is an $n \times n$ array such that for each $i \in N(m), i$ occurs λ_{i} times in each row and λ_{i} times in each column; necessarily $\sum_{i=1}^{m} \lambda_{i}=n$. In the case where $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}=\lambda$ we say that L is of type $F(n ; \lambda)$; unless otherwise stated $m=n / \lambda$. Clearly a frequency square of type $F(n ; 1)$ is a Latin square of order n.

We define a diagonal in any square array to be a subset that uses each row and each column exactly once. We say that a diagonal is λ-balanced if each entry occurs λ times, for some λ. Thus, a 1-balanced diagonal in a Latin square is precisely a transversal.

In this paper we restrict ourselves to frequency squares of type $F(n ; \lambda)$; in this context we refer to a λ-balanced diagonal as simply being balanced; here each element of $N(m)$ appears exactly λ times. For our purposes, two frequency squares of type $F(n ; \lambda)$ are equivalent if and only if one can be obtained from the other by rearranging rows or columns, relabelling symbols or taking the transpose.

Trivially, any diagonal of a frequency square of type $F(\lambda ; \lambda)$ is balanced. In Section 2 we show, with one exception up to equivalence, that each frequency square of type $F(2 \lambda ; \lambda)$ has a balanced diagonal. In Section 3 we show that every frequency square of type $F(3 \lambda ; \lambda)$ has a balanced diagonal. We then make some observations and conjectures about the existence of balanced diagonals in $F(m \lambda ; \lambda)$ for $m>3$ in Section 4.

[^0]The existence of transversals in arrays (diagonals in which each entry appears at most once) or, equivalently, rainbow matchings in coloured bipartite graphs, has been well-studied [1,14]. However there appears to be scarce results on the existence of diagonals in which each entry has a fixed number of multiple occurrences. Nevertheless, the existence of transversals (and other regular structures called plexes) in Latin squares imply the existence of balanced diagonals in certain frequency squares, as shown in Section 4. Conversely, the results in this paper suggest a certain generalization of Ryser's conjecture, that each Latin square of odd order has a transversal; see Conjecture 9.

Two frequency squares are said to be orthogonal if, when superimposed, each ordered pair occurs a constant number of times. Research into frequency squares focuses mainly on constructing sets of mutually orthogonal frequency squares (MOFS). The maximum possible size of a set of MOFS of type $F(n ; \lambda)$ is $(n-1)^{2} /(m-1)$ [7]; such a set is called complete. There are various constructions for complete sets of MOFS of type $F(n ; \lambda)$ in the literature [8-10]; it was shown by Mavron that all such sets of MOFS can be derived from affine designs [11].

The relationship between the existence of a balanced diagonal in a frequency square F and whether that frequency square is orthogonal to another frequency square appears to the authors not to be trivial; we leave this as an open question for exploration. Certainly if L is a frequency square of type $F(n ; \lambda)$ and L is orthogonal to a Latin square of order n, then L must partition into balanced diagonals (the cells of a fixed entry in L form a balanced diagonal in $F(n ; \lambda)$). The frequency square A_{6} of type $F(6 ; 3)$ below is shown in the next section to have no balanced diagonals, yet is orthogonal to the following frequency square B below of type $F(6 ; 2)$.

1	1	1	2	2	2
1	1	1	2	2	2
1	1	1	2	2	2
2	2	2	1	1	1
2	2	2	1	1	1
2	2	2	1	1	1
A_{6}					

1	2	3	1	2	3
2	3	1	2	3	1
3	1	2	3	1	2
1	2	3	1	2	3
2	3	1	2	3	1
3	1	2	3	1	2
B					

Instead of starting with any diagonal and trying to permute rows and columns to make it balanced, we obtain our main results in Sections 2 and 3 by first identifying a subarray that allows us to construct a diagonal within the rest of the square that is close to being balanced. The properties of the subarray then allow us to find a balanced diagonal in the entire square. This approach makes the proof of Theorem 2 in particular delightfully terse (compared to an originally drafted much longer proof) and the proof of Theorem 3 manageable. This idea may be of use towards the solution of related combinatorial problems.

2. Balanced diagonals in frequency squares with 2 symbols

Let $A_{2 \lambda}$ be the frequency square of type $F(2 \lambda ; \lambda)$ with only 1 's in the top-left and bottom-right quadrants, formally defined as follows:

$$
A_{2 \lambda}=\{(i, j ; 1),(i+\lambda, j+\lambda ; 1),(i, j+\lambda ; 2),(i+\lambda, j ; 2) \mid i, j \in N(\lambda)\} .
$$

The frequency square A_{6} was given in the Introduction.
Lemma 1. The frequency array $A_{2 \lambda}$ possesses a balanced diagonal if and only if λ is even.
Proof. It is easy to find a balanced diagonal if λ is even. If λ is odd, suppose that $A_{2 \lambda}$ possesses a balanced diagonal M with x elements in cells (i, j) where $i, j \in N(\lambda)$. Then M has $\lambda-x$ elements in cells (i, j) where $i, j-\lambda \in N(\lambda)$ and in turn, x elements in cells (i, j) where $i-\lambda, j-\lambda \in N(\lambda)$. Thus, $2 x$ elements of M contain entry 1 , contradicting the fact that λ is odd.

As an aside we note that if λ is odd, $A_{2 \lambda}$ is not orthogonal to any frequency square of type $F(2 \lambda ; \lambda)$. The proof is very similar to the previous proof.

Theorem 2. Let L be a frequency square of type $F(2 \lambda ; \lambda)$. Then L has a balanced diagonal, unless L is equivalent to $A_{2 \lambda}$ where λ is odd.

Proof. Let L be a frequency square of type $F(2 \lambda ; \lambda)$. Observe that if L does not possess the following subarray, it must be equivalent to $A_{2 \lambda}$ and the previous lemma applies.

1	1
1	2

Otherwise, we assume without loss of generality that $L_{1,1}=L_{1,2}=L_{2,1}=1$ and $L_{2,2}=2$. Let M be the main diagonal and let x be the number of 1 's in M. Rearrange the rows and columns (except for the first two rows and columns) so that $|x-\lambda|$ is minimized. If $x-\lambda=0$ the main diagonal is balanced and we are done. If $x-\lambda=-1$, we can swap rows 1 and 2 and the main diagonal becomes a balanced diagonal.

https://daneshyari.com/en/article/8902931

Download Persian Version:

https://daneshyari.com/article/8902931

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nickc@waikato.ac.nz (N.J. Cavenagh), a.mammoliti@unsw.edu.au (A. Mammoliti).

