Note

An infinite family of subcubic graphs with unbounded packing chromatic number

Boštjan Brešar ${ }^{\text {a,b,* }}$, Jasmina Ferme ${ }^{\text {c,a }}$
${ }^{\text {a }}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
${ }^{\mathrm{b}}$ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
${ }^{\text {c }}$ Faculty of Education, University of Maribor, Slovenia

A R TICLE INFO

Article history:

Received 29 January 2018
Received in revised form 5 May 2018
Accepted 7 May 2018
Available online 29 May 2018

Keywords:

Packing
Coloring
Packing coloring
Diameter
Subcubic graph

Abstract

Recently, Balogh et al. (2018) answered in negative the question that was posed in several earlier papers whether the packing chromatic number is bounded in the class of graphs with maximum degree 3 . In this note, we present an explicit infinite family of subcubic graphs with unbounded packing chromatic number.

© 2018 Elsevier B.V. All rights reserved.

Given a graph G, the distance between two vertices u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest u, v-path (we often drop the subscript if the graph G is clear from context). The maximum of $\left\{d_{G}(x, y): x, y \in V(G)\right\}$ is called the diameter of G and denoted by $\operatorname{diam}(G)$. An i-packing in G, where i is a positive integer, is a subset W of the vertex set of G such that the distance between any two distinct vertices from W is greater than i. This concept generalizes the notion of an independent set, which is equivalent to a 1-packing. The packing chromatic number of G is the smallest integer k such that the vertex set of G can be partitioned into sets V_{1}, \ldots, V_{k}, where V_{i} is an i-packing for each $i \in\{1, \ldots, k\}$. This invariant is well defined in any graph G and is denoted by $\chi_{\rho}(G)$. The corresponding mapping $c: V(G) \longrightarrow\{1, \ldots, k\}$ having the property that $c(u)=c(v)=i$ implies $d_{G}(u, v)>i$ is called a k-packing coloring.

The concept of packing chromatic number of a graph was introduced a decade ago under the name broadcast chromatic number [12], and the current name was given in [4]. A number of authors have studied this invariant, cf. a selection of recent papers [$1,3,5-8,10,11,13-17]$. In particular, it was shown that the problem of determining the packing chromatic number is computationally (very) hard [9] as its decision version is NP-complete even when restricted to trees. Already in the seminal paper [12] it was observed that there is no upper bound for the packing chromatic number in the class of graphs with fixed maximum degree Δ when $\Delta \geq 4$, while the question for subcubic graphs (that is, the graphs with $\Delta \leq 3$) intrigued several authors, see [5,7,11,12]. In particular, a subcubic graph with packing chromatic number 13 was found in [11], and a subcubic graph with packing chromatic number 14 was constructed in [7], but no subcubic graph with bigger packing chromatic number was known. Finally, in [2] the authors proved that the packing chromatic number of subcubic graphs is unbounded. The proof is rather involved and uses the so-called configuration model technique. However, this remarkable proof does not give an explicit construction of a family of subcubic graphs with unbounded packing chromatic number.

[^0]

Fig. 1. Graph H.

In this note we present a family of subcubic graphs G_{k} with the property that $\chi_{\rho}\left(G_{k}\right) \geq 2 k+9$. The main tool in the proof is to keep the diameter of the graphs in the family under control (that is, diam $\left(G_{k}\right) \leq 2 k+6$), and at the same time a packing coloring of these graphs requires more colors than the diameter. We are able to compute the bounds for the packing chromatic numbers of the graphs G_{k} by using recursive structure of the family G_{k} (each graph G_{k} contains two copies of G_{k-1} as induced subgraphs).

In the remainder of this note, we present the construction and prove the mentioned bounds for the diameter and the packing chromatic number of the graphs G_{k}. The basic building block in the construction is the graph H in Fig. 1. Note that $\operatorname{diam}(H)=4$.

Lemma 1. The packing chromatic number of the graph H, shown in Fig. 1, is at least 7.
Proof. Suppose to the contrary that $\chi_{\rho}(H) \leq 6$ and let c be an arbitrary 6-packing coloring of the graph H. Denote by Y the subgraph of H induced by the vertices y_{1}, \ldots, y_{7}, and by Z the subgraph of H induced by the vertices z_{1}, \ldots, z_{7}. For c restricted to Y (and analogously to Z) we have $\left|c^{-1}(1) \cap V(Y)\right| \leq 3,\left|c^{-1}(2) \cap V(Y)\right| \leq 2$ and $\left|c^{-1}(3) \cap V(Y)\right| \leq 1$. Therefore, $\left|c^{-1}(1) \cap V(H)\right| \leq 7,\left|c^{-1}(2) \cap V(H)\right| \leq 5,\left|c^{-1}(3) \cap V(H)\right| \leq 2$. Since the diameter of H is 4 , we also have $\left|c^{-1}(l) \cap V(H)\right|=1$ for any $l \in\{4,5,6\}$. We distinguish four cases with respect to $\left|c^{-1}(2) \cap V(H)\right|$.

Case 1. $\left|c^{-1}(2) \cap V(H)\right|=5$.
All vertices, which get color 2 , are uniquely determined and these are y_{1}, y_{7}, w, z_{3} and z_{5}. Since $c(w) \neq 1$, we have $\left|c^{-1}(1) \cap V(H)\right| \leq 6$. Recall that $\left|c^{-1}(1) \cap V(Y)\right| \leq 3$ and $\left|c^{-1}(1) \cap V(Z)\right| \leq 3$, but it is easy to see that if $\left|c^{-1}(1) \cap V(Y)\right|=3$ then $\left|c^{-1}(1) \cap V(\bar{Z})\right|$ cannot reach the established upper bound (respectively, if $\left|c^{-1}(1) \cap V(Z)\right|=3$, then $\left.\left|c^{-1}(1) \cap V(Y)\right|<3\right)$. This yields $\left|c^{-1}(1) \cap V(H)\right| \leq 5$. If $\left|c^{-1}(1) \cap V(H)\right|=5$ (and $\left|c^{-1}(2) \cap V(H)\right|=5$), then vertices colored by 1 are $y_{3}, y_{4}, y_{5}, z_{2}$ and z_{6} (or $z_{1}, z_{4}, z_{7}, y_{2}$ and y_{6}), but then $\left|c^{-1}(3) \cap V(H)\right| \leq 1$ and hence $\sum_{i=1}^{6}\left|c^{-1}(i) \cap V(H)\right| \leq 14$. This is contradiction since H has 15 vertices, but we can color only 14 of them. The same contradiction arises if $\left|c^{-1}(1) \cap V(H)\right|<5$.

Case 2. $\left|c^{-1}(2) \cap V(H)\right|=4$.
Suppose $c(w) \neq 2$. Then the vertices, which are colored by 2 , are y_{1}, y_{7}, z_{3} and z_{5}. If $c(w)=1$, then $\left|c^{-1}(1) \cap V(H)\right| \leq 5$ and $\sum_{i=1}^{6}\left|c^{-1}(i) \cap V(H)\right| \leq 14$, therefore we get the same contradiction as above. If $c(w) \neq 1$, then we have the analogous situation as in Case 1, which implies $\left|c^{-1}(1) \cap V(H)\right| \leq 5$ and $\sum_{i=1}^{6}\left|c^{-1}(i) \cap V(H)\right| \leq 14$, a contradiction.

Next, suppose $c(w)=2$. Without loss of generality we may assume that $\left|c^{-1}(2) \cap V(Y)\right|=2$ (and $\left.\left|c^{-1}(2) \cap V(Z)\right|=1\right)$. This is not possible if $c\left(y_{3}\right)=2$ and $c\left(y_{5}\right)=2$, hence the vertices of Y colored by 2 are y_{1} and y_{7}. It is clear that $\left|c^{-1}(1) \cap V(H)\right| \leq 6$, but it is also easy to see that if $\left|c^{-1}(1) \cap V(Y)\right|=3$, then $\left|c^{-1}(1) \cap V(Z)\right| \leq 2$ (note that $\left|c^{-1}(2) \cap V(Z)\right|=1$, namely $c\left(z_{3}\right)=2$ or $c\left(z_{5}\right)=2$). Hence $\left|c^{-1}(1) \cap V(H)\right| \leq 5$ and we get the same contradiction as above.

Case 3. $\left|c^{-1}(2) \cap V(H)\right|=3$.
If $c(w) \neq 1$, then $\left|c^{-1}(1) \cap V(H)\right| \leq 6$ and $\sum_{i=1}^{6}\left|c^{-1}(i) \cap V(H)\right| \leq 14$, a contradiction.
Suppose $c(w)=1$. Again, without loss of generality we may assume that $\left|c^{-1}(2) \cap V(Y)\right|=2$ (and $\left.\left|c^{-1}(2) \cap V(Z)\right|=1\right)$. The vertices of Y, colored by 2 , are either y_{1} and y_{7} or y_{3} and y_{5}, but in each case this yields $\left|c^{-1}(1) \cap V(Y)\right| \leq 2$ (note that $\left.c\left(y_{4}\right) \neq 1\right)$. Hence $\left|c^{-1}(1) \cap V(H)\right| \leq 6$ and $\sum_{i=1}^{6}\left|c^{-1}(i) \cap V(H)\right| \leq 14$, which is a contradiction.

Case 4. $\left|c^{-1}(2) \cap V(H)\right| \leq 2$.
In this case we have $\sum_{i=1}^{6}\left|c^{-1}(i) \cap V(H)\right| \leq 14$, which is again a contradiction.
Next, starting from two copies of graph H (denoted by H^{\prime} and $H^{\prime \prime}$), adding five vertices, and adding edges as shown in Fig. 2 we obtain graph G_{0}.

Lemma 2. The diameter of the graph G_{0}, shown in Fig. 2, is at most 6 .
Proof. Recall that the diameter of the graph H is 4 . Hence it is clear that the distance between any two vertices of the subgraph H^{\prime} (or $H^{\prime \prime}$) of G_{0} is at most 4. Therefore, we only need to check the distances between any two vertices of G_{0}, one of which is from $V\left(H^{\prime}\right) \cup\{a, b, c, d, x\}$ and the other from $V\left(H^{\prime \prime}\right) \cup\{a, b, c, d, x\}$.

https://daneshyari.com/en/article/8902941

Download Persian Version:

https://daneshyari.com/article/8902941

Daneshyari.com

[^0]: * Corresponding author at: Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia.

 E-mail address: bostjan.bresar@um.si (B. Brešar).

