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edges in M is a forest. We show that the acyclic matching number of a connected subcubic
graph G with m edges is at least m/6 except for two graphs of order 5 and 6.
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1. Introduction

We consider finite, simple, and undirected graphs, and use standard terminology and notation. A matching M in a graph
Gis acyclic [7] if the subgraph of G induced by the set of vertices that are incident to some edge in M is a forest, and the acyclic
matching number v,.(G) of G is the maximum size of an acyclic matching in G. While the ordinary matching number v(G) of G
is tractable [4], it has been known for some time that the acyclic matching number is NP-hard for graphs of maximum degree
5[7,15]. Recently, we [6] showed that just deciding the equality of v(G) and v4:(G) is already NP-complete when restricted
to bipartite graphs G of maximum degree 4. The complexity of the acyclic matching number for cubic graphs is unknown.

In the present paper we establish a lower bound on the acyclic matching number of subcubic graphs. Similar results were
obtained for the matching number [2,8,10,14], and also for the induced matching number [11-13]. Baste and Rautenbach [1]
showed that the edge set of a graph G of maximum degree A(G) can be partitioned into at most A(G)? acyclic matchings in G.
This implies v (G) > m(G)/ A(G)?, where m(G) denotes the size of G. For subcubic graphs, this simplifies to v,(G) > m(G)/9.
This latter bound also follows from a lower bound [ 13] on the induced matching number, which is always at most the acyclic
matching number. While the bound is tight for K3 3, excluding some small graphs allows a considerable improvement. Let
K j be the graph that arises by subdividing one edge of K4 once.

We prove the following.

Theorem 1. If Gis a connected subcubic graph that is not isomorphic to Kj or K3 3, then vg(G) > m(G)/6.

Since every subcubic graph G of order n(G) satisfies m(G) < 3n(G)/2, Theorem 1 is an immediate consequence of the
following stronger result. For two graphs G and H, let «¢(H) denote the number of components of G that are isomorphic
to H.

Theorem 2. If G is a subcubic graph without isolated vertices, then

1
+
Vac(G) > I (n(G) — ke(Ka,3) — K(K{) — 2kc(K3.3)) -
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Fig. 1. An illustration of Claim 1.

Note that Theorem 2 is tight; examples are Ky, K3 2, K 3, or the graph obtained from Kj 3 by replacing each endvertex
with an endblock isomorphic to K; 3. The proof of Theorem 2 is postponed to the second section. The reduction arguments
within that proof easily lead to a polynomial time algorithm computing acyclic matchings of the guaranteed size.

In the third section, we conclude with some open problems.

2. Proof of Theorem 2

The proof is by contradiction. Therefore, suppose that G is a counterexample to Theorem 2 that is of minimum order n.
A graph is special if it is isomorphic to K5 3, KI, or K3 3. Clearly, G is connected, not special, and n is at least 5. By our initial
assumption, vy (G) < n/4.

We derive a contradiction using a series of claims.

Claim 1. No subgraph of G is isomorphic to Kj.

Proof of Claim 1. Suppose that G has a subgraph H that is isomorphic to I<4+ . Let vy, vo, v3, and vy be the vertices of degree
3in H, and let u the vertex of degree 2 in H. Let G’ = G — {v1, vo, v3, v4}, see Fig. 1.

Since G is connected, the graph G’ is connected. Since u has degree 1 in G/, the graph G’ is not special. By the choice of G,
the graph G’ is no counterexample to Theorem 2, and, hence, it has an acyclic matching M’ of size at least n(G')/4 = n/4 — 1.
Adding the edge vyv; to M’ yields an acyclic matching in G of size at least n/4, which is a contradiction. O

Claim 2. No endblock of G is isomorphic to K 3.

Proof of Claim 2. Suppose that some endblock B of G is isomorphic to K3 3. Let u be the unique cutvertex of G in B. Clearly,
the vertex u has degree 2 in B. The graph G’ = G — (V(B) \ {u}) is connected, and, since u has degree 1 in G/, it is not special.
Therefore, by the choice of G, the graph G’ has an acyclic matching M’ of size at least n(G')/4 = n/4 — 1. Adding an edge of
B that is not incident to u to M’ yields an acyclic matching in G of size at least n/4, which is a contradiction. O

Claim 3. No two vertices of degree 1 have a common neighbor.

Proof of Claim 3. Suppose that u and v are two vertices of degree 1, and that w is their common neighbor. Let ¢’ =
G — {u, v, w}. Since G’ is connected and not isomorphic to K3 3, the choice of G implies that G’ has an acyclic matching
M’ of size at least (n(G’) — 1)/4 = n/4 — 1. Since w does not lie on any cycle in G, adding the edge uw to M’ yields an acyclic
matching in G of size at least n/4, which is a contradiction. O

Claim 4. No vertex of degree 1 is adjacent to a vertex that does not lie on a cycle.

Proof of Claim 4. Suppose that u is a vertex of degree 1 that is adjacent to a vertex v that does not lie on a cycle. By Claim 3,
the graph G’ = G — {u, v} has no isolated vertex. Since G’ has at most two components, and no component of G’ is isomorphic
to K3 3, the choice of G implies that G’ has an acyclic matching M’ of size at least (n(G') — 2)/4 = n/4 — 1. Since v does not
lie on a cycle, adding the edge uv to M’ yields an acyclic matching in G of size at least n/4, which is a contradiction. O

Claim 5. The minimum degree of G is at least 2.

Proof of Claim 5. Suppose that u is a vertex of degree 1. By Claim 4, the neighbor v of u lies on a cycle C in G. Let x and w be
the neighbors of v on C.

First, suppose that w has no neighbor of degree 1.

If G — {u, v, w} contains an isolated vertex, then this is necessarily the vertex x, and Ng(x) = {v, w}. In this case, let
G =G — {u, v, w, x}, see the left of Fig. 2.

Clearly, the graph G’ is connected and not isomorphic to K 3. If G’ is isomorphic to K, or K; 3, then it follows easily that
vae(G) > 3 > 9/4 = n/4, which is a contradiction. Hence, G’ is not special, which implies that G’ has an acyclic matching
M’ of size at least n(G')/4 = n/4 — 1. Adding the edge uv to M’ yields an acyclic matching in G of size at least n/4, which is
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