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a b s t r a c t

The acyclic matching number of a graph G is the largest size of an acyclic matching in G,
that is, a matching M in G such that the subgraph of G induced by the vertices incident to
edges inM is a forest. We show that the acyclic matching number of a connected subcubic
graph G withm edges is at leastm/6 except for two graphs of order 5 and 6.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite, simple, and undirected graphs, and use standard terminology and notation. A matchingM in a graph
G is acyclic [7] if the subgraph of G induced by the set of vertices that are incident to some edge inM is a forest, and the acyclic
matching number νac(G) of G is themaximum size of an acyclic matching in G. While the ordinarymatching number ν(G) of G
is tractable [4], it has been known for some time that the acyclicmatching number is NP-hard for graphs ofmaximumdegree
5 [7,15]. Recently, we [6] showed that just deciding the equality of ν(G) and νac(G) is already NP-complete when restricted
to bipartite graphs G of maximum degree 4. The complexity of the acyclic matching number for cubic graphs is unknown.

In the present paper we establish a lower bound on the acyclic matching number of subcubic graphs. Similar results were
obtained for thematching number [2,8,10,14], and also for the inducedmatching number [11–13]. Baste and Rautenbach [1]
showed that the edge set of a graph G ofmaximumdegree∆(G) can be partitioned into atmost∆(G)2 acyclic matchings in G.
This implies νac(G) ≥ m(G)/∆(G)2, wherem(G) denotes the size of G. For subcubic graphs, this simplifies to νac(G) ≥ m(G)/9.
This latter bound also follows from a lower bound [13] on the inducedmatching number, which is always at most the acyclic
matching number. While the bound is tight for K3,3, excluding some small graphs allows a considerable improvement. Let
K+

4 be the graph that arises by subdividing one edge of K4 once.
We prove the following.

Theorem 1. If G is a connected subcubic graph that is not isomorphic to K+

4 or K3,3, then νac(G) ≥ m(G)/6.
Since every subcubic graph G of order n(G) satisfies m(G) ≤ 3n(G)/2, Theorem 1 is an immediate consequence of the

following stronger result. For two graphs G and H , let κG(H) denote the number of components of G that are isomorphic
to H .

Theorem 2. If G is a subcubic graph without isolated vertices, then

νac(G) ≥
1
4

(
n(G) − κG(K2,3) − κG(K+

4 ) − 2κG(K3,3)
)
.
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Fig. 1. An illustration of Claim 1.

Note that Theorem 2 is tight; examples are K4, K2,2, K1,3, or the graph obtained from K1,3 by replacing each endvertex
with an endblock isomorphic to K2,3. The proof of Theorem 2 is postponed to the second section. The reduction arguments
within that proof easily lead to a polynomial time algorithm computing acyclic matchings of the guaranteed size.

In the third section, we conclude with some open problems.

2. Proof of Theorem 2

The proof is by contradiction. Therefore, suppose that G is a counterexample to Theorem 2 that is of minimum order n.
A graph is special if it is isomorphic to K2,3, K+

4 , or K3,3. Clearly, G is connected, not special, and n is at least 5. By our initial
assumption, νac(G) < n/4.

We derive a contradiction using a series of claims.

Claim 1. No subgraph of G is isomorphic to K+

4 .

Proof of Claim 1. Suppose that G has a subgraph H that is isomorphic to K+

4 . Let v1, v2, v3, and v4 be the vertices of degree
3 in H , and let u the vertex of degree 2 in H . Let G′

= G − {v1, v2, v3, v4}, see Fig. 1.

Since G is connected, the graph G′ is connected. Since u has degree 1 in G′, the graph G′ is not special. By the choice of G,
the graph G′ is no counterexample to Theorem 2, and, hence, it has an acyclic matchingM ′ of size at least n(G′)/4 = n/4−1.
Adding the edge v1v2 to M ′ yields an acyclic matching in G of size at least n/4, which is a contradiction. □

Claim 2. No endblock of G is isomorphic to K2,3.

Proof of Claim 2. Suppose that some endblock B of G is isomorphic to K2,3. Let u be the unique cutvertex of G in B. Clearly,
the vertex u has degree 2 in B. The graph G′

= G − (V (B) \ {u}) is connected, and, since u has degree 1 in G′, it is not special.
Therefore, by the choice of G, the graph G′ has an acyclic matching M ′ of size at least n(G′)/4 = n/4 − 1. Adding an edge of
B that is not incident to u to M ′ yields an acyclic matching in G of size at least n/4, which is a contradiction. □

Claim 3. No two vertices of degree 1 have a common neighbor.

Proof of Claim 3. Suppose that u and v are two vertices of degree 1, and that w is their common neighbor. Let G′
=

G − {u, v, w}. Since G′ is connected and not isomorphic to K3,3, the choice of G implies that G′ has an acyclic matching
M ′ of size at least (n(G′)− 1)/4 = n/4− 1. Since w does not lie on any cycle in G, adding the edge uw toM ′ yields an acyclic
matching in G of size at least n/4, which is a contradiction. □

Claim 4. No vertex of degree 1 is adjacent to a vertex that does not lie on a cycle.

Proof of Claim 4. Suppose that u is a vertex of degree 1 that is adjacent to a vertex v that does not lie on a cycle. By Claim 3,
the graph G′

= G−{u, v} has no isolated vertex. Since G′ has at most two components, and no component of G′ is isomorphic
to K3,3, the choice of G implies that G′ has an acyclic matching M ′ of size at least (n(G′) − 2)/4 = n/4 − 1. Since v does not
lie on a cycle, adding the edge uv toM ′ yields an acyclic matching in G of size at least n/4, which is a contradiction. □

Claim 5. The minimum degree of G is at least 2.

Proof of Claim 5. Suppose that u is a vertex of degree 1. By Claim 4, the neighbor v of u lies on a cycle C in G. Let x and w be
the neighbors of v on C .

First, suppose that w has no neighbor of degree 1.
If G − {u, v, w} contains an isolated vertex, then this is necessarily the vertex x, and NG(x) = {v, w}. In this case, let

G′
= G − {u, v, w, x}, see the left of Fig. 2.
Clearly, the graph G′ is connected and not isomorphic to K3,3. If G′ is isomorphic to K+

4 or K2,3, then it follows easily that
νac(G) ≥ 3 > 9/4 = n/4, which is a contradiction. Hence, G′ is not special, which implies that G′ has an acyclic matching
M ′ of size at least n(G′)/4 = n/4 − 1. Adding the edge uv to M ′ yields an acyclic matching in G of size at least n/4, which is
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