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1. Introduction

In this paper we investigate the problem of splitting the vertex set of a planar graph G = (V, E) into two subsets such
that subgraphs induced by both subsets do not contain simple paths on k vertices, denoted P,. The problem is equivalent to
the vertex colouring of G by two colours such that G does not contain a monochromatic path Py.

A graph G is planar if it can be drawn in the plane with no crossings. A plane graph is a planar drawing of a planar
graph G. The girth of a graph G, denoted g(G), is the length of its shortest cycle. An m-colouring of G is any colouring
c:V — {1,2,..., m}of its vertices by m colours. A colouring c is proper if any two adjacent vertices have different colours.
A graph G is (properly) m-colourable if there exists a proper m-colouring of its vertices. A colouring c is Py-free if G contains
no monochromatic path P;. We say that a Pi-free colouring is acyclic if G contains no monochromatic cycle, and hence each
monochromatic component of G is a tree of diameter at most k — 2.

Another important and intensively studied concept is defective (d1, . . ., dp,)-colouring of a graph G where vertices of every
colouri € {1, ..., m}induce a subgraph of maximum degree at most d;. Observe that both defective (0, .. ., 0)-colouring and
P,-free m-colouring are identical to a proper m-colouring while a P;-free colouring is equivalent to a defective (1, ..., 1)-
colouring (where every monochromatic component is a vertex or an edge).

For all colourings introduced above it is interesting to consider their list versions. Suppose Lis a list assignment for a graph
G, which assigns a list of available colours L(v) to every vertex v € V. An L-colouring of Gisa colouringc : V — [ J, ., L(v) such
that c(v) € L(v) for every v € V. A graph G is m-choosable if it admits a proper L-colouring for every list assignment L such
that |L(v)] = mforall v € V. Along with proper L-colourings, we can consider (acyclic) P,-free and defective L-colourings (in
the cased; = d, = --- = d;; = d) and corresponding (acyclic) P,-free m-choosable and defective (d, d, ..., d)-choosable
graphs.

The notion of a P,-free colouring was introduced by Chartrand, Geller, and Hedetniemi [11], who showed that for any
k > 0 there exist planar graphs that do not admit a Py-free 3-colouring. However, by the famous Four Colour Theorem [2,3],
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every planar graph is 4-colourable or, equivalently, P,-free 4-colourable. Cowen, Cowen, and Woodall [ 13] proved that every
planar graph is defectively (2, 2, 2)-colourable. The well-known Grétzsch Theorem [ 16] yields that every triangle-free planar
graph is P,-free 3-colourable.

Recently, Axenovich, Ueckerdt, and Weiner [4] showed that for any k > O there exist triangle-free planar graphs (of
girth 4) that are not Py-free 2-colourable. Montassier and Ochem [21], for all k > 0, presented examples of 2-degenerate
planar graphs of girth 4 (respectively, 5 and 7) that are not defectively (k, k)-colourable (respectively, not (3, 1)-colourable
and not (2, 0)-colourable). Borodin et al. [8], for every k > 0, constructed 2-degenerate planar graphs of girth 6 that are not
defectively (k, 0)-colourable.

On the other hand, it is known that if the maximum average degree, mad(G) = maxycg2 ||V( H))‘ of a graph G is low, then G
is defectively (dq, d;)-colourable for small constants d; and d,. Borodin, Kostochka, and Yancey f]O] proved that every graph
G with mad(G) < E is defectively (1, 1)-colourable or, equivalently, P;-free 2-colourable. Borodin and Ivanova [7] proved
that every graph G with g(G) > 7 and mad(G) < 15—4 admits a list 2-colouring where every monochromatic component is a
path with at most three vertices. Since every planar graph G with girth at least g has mad(G) < -2 5, the results in [7,10]
are valld for Planar graphs of girth at least 7. Kim, Kostochka, and Zhu [19] proved that every trlangle free graph G with
|E(H NS for every subgraph H C G admits a defective (0, 1)-colouring. This implies that every planar graph with
glrth at least 11 is defectively (0, 1)-colourable. By the results of Borodin and Kostochka [9], it follows that every planar
graph G with g(G) > 8 (respectively, g(G) > 7, g(G) > 6, and g(G) > 5) is defectively (0, 2)-colourable (respectively, (0, 4)-
colourable, (1, 4)-colourable, and (2, 6)-colourable). Choi and Raspaud [12] proved that planar graphs with girth at least 5
are defectively (3, 5)-colourable. Havet and Sereni [17] obtained, for every k > 0, that every graph G with mad(G) < %2
is defectively (k, k)-choosable. This implies that every planar graph G is defectively (1, 1)-choosable if g(G) > 8 and (2, 2)-
choosable if g(G) > 6. Skrekovski [22] proved that planar graphs with girth at least 5 are defectively (4, 4)-choosable.

Glebov and Zambalaeva [ 15] proved that every planar graph with girth at least 6 is acyclically Ps-free 2-colourable while
in [4] it was proved that such a graph admits a list 2-colouring where any monochromatic component is a path with at most
15 vertices. In the case of planar graphs of girth 5, no results about P,-free 2-colouring with fixed k are known. Borodin and
Glebov [6] proved that every planar graph of girth 5 admits a 2-colouring where vertices of colour 1 form an independent
set while vertices of colour 2 induce a forest (without any restrictions on the length of monochromatic paths). This result
was slightly improved by Kawarabayashi and Thomassen [ 18] in terms of colouring extensions. Glebov and Zambalaeva [ 14]
proved that every planar graph of girth 5 is t-partitionable. A graph G is called t-partitionable if for any positive integers
a and b such that a + b is the number of vertices in the longest path of G, there exists a 2-colouring of G such that any
monochromatic path of colour 1 contains at most a vertices while any monochromatic path of colour 2 contains at most b
vertices.

Quite naturally, Mihok [20] and the authors of [4] asked about the minimum integer g* > 3 such that every planar graph
of girth g* admits a Py-free 2-colouring for some constant integer k. By the results in [4,15], it follows that5 < g* < 6.

In this paper we prove that g* = 5. More precisely, our main result can be formulated as follows:

Theorem 1. Every planar graph of girth at least 5 admits an acyclic Pg-free 2-colouring.

Moreover, we present the list version of Theorem 1.

Theorem 2. For any planar graph G = (V, E) of girth at least 5 and for any list assignment L such that |L(v)| = 2 for every vertex
v € V there exists an acyclic Pg-free L-colouring of G.

Clearly, Theorem 2 implies Theorem 1 if L(v) = {1, 2} for every v € V. However, for the sake of presentation, we will
prove Theorem 1 first and then modify its proof in order to establish Theorem 2 (which is technically a bit more complicated
but can be derived using the same ideas).

Unlike most results mentioned above, our proof of Theorems 1 and 2 is not based on Euler’s Formula, but is motivated by
the proof of the well-known theorem that planar graphs are 5-choosable by Thomassen [23] and by the powerful technique
of safe subgraphs developed by Borodin. The approach of Borodin is that a reducible configuration in a plane graph is found
inside a subgraph bounded by a minimal separated cycle of a suitable length (see [ 1,5]). However, our proof method involves
some new features compared to the approaches of Thomassen and Borodin. The detailed description of our technique along
with the formulation of the main technical Lemma 1 is given in Section 2 of the paper. Section 3 represents the proof of
Lemma 1. Section 4 is devoted to the proof of Theorem 2.

2. Specification of vertices and the main technical result

Suppose G = (V, E) is a plane graph of girth at least 5 with the vertex set V and the edge set E. By F we denote the outer
face of G and by V(F) we denote the set of all vertices of G incident with F. We refer to the vertices in V(F) as external vertices
of G while the vertices in V \ V(F) are internal.

As it was mentioned above, our proof of Theorems 1 and 2 follows the lines of the proof of Thomassen’s theorem that
every planar graph is 5-choosable. The main idea of Thomassen'’s proof is to put forward a stronger statement by imposing
additional requirements on the colouring of vertices of the outer face of a plane graph. More specifically, such external
vertices are assigned smaller lists of colours (of size 3 or 1) compared to the internal vertices, which are given lists of size 5.



Download English Version:

https://daneshyari.com/en/article/8902953

Download Persian Version:

https://daneshyari.com/article/8902953

Daneshyari.com


https://daneshyari.com/en/article/8902953
https://daneshyari.com/article/8902953
https://daneshyari.com

