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a b s t r a c t

In 1985, Mihok and recently Axenovich, Ueckerdt, and Weiner asked about the minimum
integer g∗ > 3 such that every planar graph with girth at least g∗ admits a 2-colouring
of its vertices where the length of every monochromatic path is bounded from above by
a constant. By results of Glebov and Zambalaeva and of Axenovich et al., it follows that
5 ≤ g∗

≤ 6. In this paper we establish that g∗
= 5. Moreover, we prove that every planar

graph of girth at least 5 admits a 2-colouring of its vertices such that every monochromatic
component is a tree of diameter at most 6. We also present the list version of our result.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we investigate the problem of splitting the vertex set of a planar graph G = (V , E) into two subsets such
that subgraphs induced by both subsets do not contain simple paths on k vertices, denoted Pk. The problem is equivalent to
the vertex colouring of G by two colours such that G does not contain a monochromatic path Pk.

A graph G is planar if it can be drawn in the plane with no crossings. A plane graph is a planar drawing of a planar
graph G. The girth of a graph G, denoted g(G), is the length of its shortest cycle. An m-colouring of G is any colouring
c : V → {1, 2, . . . ,m} of its vertices bym colours. A colouring c is proper if any two adjacent vertices have different colours.
A graph G is (properly) m-colourable if there exists a proper m-colouring of its vertices. A colouring c is Pk-free if G contains
no monochromatic path Pk. We say that a Pk-free colouring is acyclic if G contains no monochromatic cycle, and hence each
monochromatic component of G is a tree of diameter at most k − 2.

Another important and intensively studied concept is defective (d1, . . . , dm)-colouring of a graphGwhere vertices of every
colour i ∈ {1, . . . ,m} induce a subgraph ofmaximumdegree atmost di. Observe that both defective (0, . . . , 0)-colouring and
P2-free m-colouring are identical to a proper m-colouring while a P3-free colouring is equivalent to a defective (1, . . . , 1)-
colouring (where every monochromatic component is a vertex or an edge).

For all colourings introduced above it is interesting to consider their list versions. Suppose L is a list assignment for a graph
G, which assigns a list of available colours L(v) to every vertex v ∈ V . An L-colouring ofG is a colouring c : V →

⋃
v∈V L(v) such

that c(v) ∈ L(v) for every v ∈ V . A graph G is m-choosable if it admits a proper L-colouring for every list assignment L such
that |L(v)| = m for all v ∈ V . Along with proper L-colourings, we can consider (acyclic) Pk-free and defective L-colourings (in
the case d1 = d2 = · · · = dm = d) and corresponding (acyclic) Pk-free m-choosable and defective (d, d, . . . , d)-choosable
graphs.

The notion of a Pk-free colouring was introduced by Chartrand, Geller, and Hedetniemi [11], who showed that for any
k > 0 there exist planar graphs that do not admit a Pk-free 3-colouring. However, by the famous Four Colour Theorem [2,3],
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every planar graph is 4-colourable or, equivalently, P2-free 4-colourable. Cowen, Cowen, andWoodall [13] proved that every
planar graph is defectively (2, 2, 2)-colourable. Thewell-knownGrötzsch Theorem [16] yields that every triangle-free planar
graph is P2-free 3-colourable.

Recently, Axenovich, Ueckerdt, and Weiner [4] showed that for any k > 0 there exist triangle-free planar graphs (of
girth 4) that are not Pk-free 2-colourable. Montassier and Ochem [21], for all k > 0, presented examples of 2-degenerate
planar graphs of girth 4 (respectively, 5 and 7) that are not defectively (k, k)-colourable (respectively, not (3, 1)-colourable
and not (2, 0)-colourable). Borodin et al. [8], for every k > 0, constructed 2-degenerate planar graphs of girth 6 that are not
defectively (k, 0)-colourable.

On the other hand, it is known that if the maximum average degree, mad(G) = maxH⊆G2 |E(H)|
|V (H)| , of a graph G is low, then G

is defectively (d1, d2)-colourable for small constants d1 and d2. Borodin, Kostochka, and Yancey [10] proved that every graph
G with mad(G) ≤

14
5 is defectively (1, 1)-colourable or, equivalently, P3-free 2-colourable. Borodin and Ivanova [7] proved

that every graph G with g(G) ≥ 7 and mad(G) < 14
5 admits a list 2-colouring where every monochromatic component is a

path with at most three vertices. Since every planar graph G with girth at least g has mad(G) <
2g
g−2 , the results in [7,10]

are valid for planar graphs of girth at least 7. Kim, Kostochka, and Zhu [19] proved that every triangle-free graph G with
|E(H)| <

11|V (H)|+5
9 for every subgraph H ⊆ G admits a defective (0, 1)-colouring. This implies that every planar graph with

girth at least 11 is defectively (0, 1)-colourable. By the results of Borodin and Kostochka [9], it follows that every planar
graph G with g(G) ≥ 8 (respectively, g(G) ≥ 7, g(G) ≥ 6, and g(G) ≥ 5) is defectively (0, 2)-colourable (respectively, (0, 4)-
colourable, (1, 4)-colourable, and (2, 6)-colourable). Choi and Raspaud [12] proved that planar graphs with girth at least 5
are defectively (3, 5)-colourable. Havet and Sereni [17] obtained, for every k ≥ 0, that every graph G with mad(G) < 4k+4

k+2
is defectively (k, k)-choosable. This implies that every planar graph G is defectively (1, 1)-choosable if g(G) ≥ 8 and (2, 2)-
choosable if g(G) ≥ 6. Skrekovski [22] proved that planar graphs with girth at least 5 are defectively (4, 4)-choosable.

Glebov and Zambalaeva [15] proved that every planar graph with girth at least 6 is acyclically P6-free 2-colourable while
in [4] it was proved that such a graph admits a list 2-colouring where any monochromatic component is a path with at most
15 vertices. In the case of planar graphs of girth 5, no results about Pk-free 2-colouring with fixed k are known. Borodin and
Glebov [6] proved that every planar graph of girth 5 admits a 2-colouring where vertices of colour 1 form an independent
set while vertices of colour 2 induce a forest (without any restrictions on the length of monochromatic paths). This result
was slightly improved by Kawarabayashi and Thomassen [18] in terms of colouring extensions. Glebov and Zambalaeva [14]
proved that every planar graph of girth 5 is τ -partitionable. A graph G is called τ -partitionable if for any positive integers
a and b such that a + b is the number of vertices in the longest path of G, there exists a 2-colouring of G such that any
monochromatic path of colour 1 contains at most a vertices while any monochromatic path of colour 2 contains at most b
vertices.

Quite naturally, Mihok [20] and the authors of [4] asked about the minimum integer g∗ > 3 such that every planar graph
of girth g∗ admits a Pk-free 2-colouring for some constant integer k. By the results in [4,15], it follows that 5 ≤ g∗

≤ 6.
In this paper we prove that g∗

= 5. More precisely, our main result can be formulated as follows:

Theorem 1. Every planar graph of girth at least 5 admits an acyclic P8-free 2-colouring.

Moreover, we present the list version of Theorem 1.

Theorem 2. For any planar graph G = (V , E) of girth at least 5 and for any list assignment L such that |L(v)| = 2 for every vertex
v ∈ V there exists an acyclic P8-free L-colouring of G.

Clearly, Theorem 2 implies Theorem 1 if L(v) = {1, 2} for every v ∈ V . However, for the sake of presentation, we will
prove Theorem 1 first and thenmodify its proof in order to establish Theorem 2 (which is technically a bit more complicated
but can be derived using the same ideas).

Unlike most results mentioned above, our proof of Theorems 1 and 2 is not based on Euler’s Formula, but is motivated by
the proof of the well-known theorem that planar graphs are 5-choosable by Thomassen [23] and by the powerful technique
of safe subgraphs developed by Borodin. The approach of Borodin is that a reducible configuration in a plane graph is found
inside a subgraph bounded by aminimal separated cycle of a suitable length (see [1,5]). However, our proof method involves
some new features compared to the approaches of Thomassen and Borodin. The detailed description of our technique along
with the formulation of the main technical Lemma 1 is given in Section 2 of the paper. Section 3 represents the proof of
Lemma 1. Section 4 is devoted to the proof of Theorem 2.

2. Specification of vertices and the main technical result

Suppose G = (V , E) is a plane graph of girth at least 5 with the vertex set V and the edge set E. By F we denote the outer
face of G and by V (F ) we denote the set of all vertices of G incident with F . We refer to the vertices in V (F ) as external vertices
of Gwhile the vertices in V \ V (F ) are internal.

As it was mentioned above, our proof of Theorems 1 and 2 follows the lines of the proof of Thomassen’s theorem that
every planar graph is 5-choosable. The main idea of Thomassen’s proof is to put forward a stronger statement by imposing
additional requirements on the colouring of vertices of the outer face of a plane graph. More specifically, such external
vertices are assigned smaller lists of colours (of size 3 or 1) compared to the internal vertices, which are given lists of size 5.
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