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a b s t r a c t

Let Ps be the s-dimensional complex projective space, and let X, Y be two non-empty open
subsets of Ps in the Zariski topology. A hypersurfaceH in Ps

×Ps induces a bipartite graph G
as follows: the partite sets of G are X and Y , and the edge set is defined by u ∼ v if and only
if (u, v) ∈ H . Motivated by the Turán problem for bipartite graphs, we say thatH∩(X×Y ) is
(s, t)-grid-free provided that G contains no complete bipartite subgraph that has s vertices
in X and t vertices in Y .We conjecture that every (s, t)-grid-free hypersurface is equivalent,
in a suitable sense, to a hypersurfacewhose degree in y is bounded by a constant d = d(s, t),
and we discuss possible notions of the equivalence.

We establish the result that ifH∩(X×P2) is (2, 2)-grid-free, then there exists F ∈ C[x, y]
of degree ≤ 2 in y such that H ∩ (X × P2) = {F = 0} ∩ (X × P2). Finally, we transfer the
result to algebraically closed fields of large characteristic.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Turán number ex(n, F ) is the maximum number of edges in an F-free graph1 on n vertices. The first systematic study
of ex(n, F ) was initiated by Turán [26], who solved the case when F = Kt is a complete graph on t vertices. Turán’s theorem
states that, on a given vertex set, the Kt-free graph with the most edges is the complete and balanced (t − 1)-partite graph,
in that the part sizes are as equal as possible.

For general graphs F , we still do not know how to compute the Turán number exactly, but if we are satisfied with an
approximate answer, the theory becomes quite simple: Erdős and Stone [8] showed that if the chromatic number χ (F ) = t ,
then ex(n, F ) = ex(n, Kt ) + o(n2) =

(
1 −

1
t−1

) ( n
2

)
+ o(n2). When F is not bipartite, this gives an asymptotic result for the

Turán number. On the other hand, for all but few bipartite graphs F , the order of ex(n, F ) is not known. Most of the research
on this problem focused on two classes of graphs: complete bipartite graphs and cycles of even length. A comprehensive
survey is given by Füredi and Simonovits [13].

Suppose G is a Ks,t-free graph with s ≤ t . The Kövari–Sós–Turán theorem [17] implies an upper bound ex(n, Ks,t ) ≤
1
2

s√t − 1 · n2−1/s
+ o(n2−1/s), which was improved by Füredi [11] to

ex(n, Ks,t ) ≤
1
2

s√t − s + 1 · n2−1/s
+ o(n2−1/s).

Despite the lack of progress on the Turán problem for complete bipartite graphs, there are certain complete bipartite graphs
for which the problem has been solved asymptotically, or even exactly. The constructions that match the upper bounds in
these cases are all similar to one another. Each of the constructions is a bipartite graph G based on an algebraic hypersurface2
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1 We say a graph is F-free if it does not have a subgraph isomorphic to F .
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H . Both partite sets of G are Fs
p and the edge set is defined by: u ∼ v if and only if (u, v) ∈ H . In short, G =

(
Fs
p,F

s
p,H(Fp)

)
,

where H(Fp) denotes the Fp-points of H . Note that G has n := 2ps vertices.
In the previous works of Erdős, Rényi and Sós [7], Brown [5], Füredi [10], Kollár, Rónyai and Szabó [16] and Alon, Rónyai

and Szabó [2], various hypersurfaces were used to define Ks,t-free graphs. Their equations were

x1y1 + x2y2 = 1, for K2,2; (1a)

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 = 1, for K3,3; (1b)
(Ns ◦ πs)(x1 + y1, x2 + y2, . . . , xs + ys) = 1, for Ks,t with t ≥ s! + 1; (1c)

(Ns−1 ◦ πs−1)(x2 + y2, x3 + y3, . . . , xs + ys) = x1y1, for Ks,t with t ≥ (s − 1)! + 1, (1d)

where πs : Fs
p → Fps is an Fp-linear isomorphism and Ns(α) is the field norm, Ns(α) := α(ps−1)/(p−1).

Clearly, the coefficients in (1a) and (1b) are integers and even independent of p. With somework, one can show that both
(1c) and (1d) are polynomial equations of degree ≤ s with coefficients in Fp. Therefore each equation in (1) can be written
as F (x, y) := F (x1, . . . , xs, y1, . . . , ys) = 0 for some F (x, y) ∈ Fp[x, y] of bounded degree. The previous works directly count
the number of Fp solutions to F (x, y) = 0 and yield |H(Fp)| = Θ(p2s−1) = Θ(n2−1/s), for each prime3 p.

Definition 1. Given two sets P1 and P2, a set V ⊂ P1 × P2 is said to contain an (s, t)-grid if there exist S ⊂ P1, T ⊂ P2 such
that s = |S|, t = |T | and S × T ⊂ V . Otherwise, we say that V is (s, t)-grid-free.

Observe that every F (x, y) derived from (1) is symmetric in xi and yi for all i. We know that (u, v) ∈ H if and only if
(v, u) ∈ H for all u, v ∈ Fs

p. The resulting bipartite graph G =
(
Fs
p,F

s
p,H(Fp)

)
would be an extremal Ks,t-free graph if H(Fp)

had been (s, t)-grid-free.
So which graphs are Ks,t-free with a maximum number of edges? The question was considered by Zoltán Füredi in his

unpublishedmanuscript [9] asserting that every K2,2-free graphwith q vertices (for q ≥ q0) and 1
2q(q+1)2 edges is obtained

from a projective plane via a polarity with q+1 absolute elements. This loosely amounts to saying that all extremal K2,2-free
graphs are defined by generalization of (1a).

However, classification of all extremal Ks,t-free graphs seems out of reach. We restrict our attention to algebraically
constructed graphs. Given a field F and a hypersurface H defined over F, it is natural to ask when H(F) is (s, t)-grid-
free. Because the general case is difficult, we work with algebraically closed fields K in this paper. Denote by Ps(K) the
s-dimensional projective space over K. We are interested in hypersurface H in Ps(K) × Ps(K).

Since standard machinery from model theory, to be discussed in Section 5, allows us to transfer certain results over C
(the field of complex numbers) to algebraically closed fields of large characteristic, our focus will be on the K = C case. We
use Ps for the s-dimensional complex projective space and As

:= Ps
\ {x0 = 0} for the s-dimensional complex affine space.

Note that even if H contains (s, t)-grids, one may remove a few points from the projective space to destroy all (s, t)-grids
in H . For example, the homogenization of (1b) is

(x1y0 − x0y1)2 + (x2y0 − x0y2)2 + (x3y0 − x0y3)2 = x20y
2
0.

The equation defines hypersurface H in P3
× P3. Let V := {x0 = x21 + x22 + x23 = 0} be a variety in P3. Since V × P3

⊂ H , H
contains a lot of (3, 3)-grids. However, H ∩ (A3

× A3) is (3, 3)-grid-free.

Definition 2. A set V ⊂ Ps
× Ps is almost-(s, t)-grid-free if there are two nonempty Zariski-open sets X, Y ⊂ Ps such that

V ∩ (X × Y ) is (s, t)-grid-free.

Suppose the defining equation of H , say F (x, y), is of low degree in y. Heuristically, for generic4 distinct u1, . . . , us ∈ Ps,
by Bézout’s theorem, one would expect {F (u1, y) = · · · = F (us, y) = 0} to have few points. So we conjecture the following.

Informal conjecture. Every almost-(s, t)-grid-free hypersurface is equivalent, in a suitable sense, to a hypersurface whose degree
in y is bounded by some constant d := d(s, t).

The right equivalence notion depends on X and Y in Definition 2. We shall discuss possible notions of equivalence in
Section 2, andmake three specific conjectures. Results in support of these conjectures can be found in Section 3 and Section 4.

Before wemake our conjectures precise, we note that an analogous situation occurs for C2t-free graphs. The upper bound
ex(n, C2t ) = O(n1+1/t ) first established by Bondy–Simonovits [4] has been matched only for t = 2, 3, 5. The t = 2 case was
already mentioned above because C4 = K2,2. The constructions for t = 3, 5 are also algebraic (see [3,12] for t = 3 and [3,27]
for t = 5). Also, a conjecture in a similar spirit about algebraic graphs of girth eight was made by Dmytrenko, Lazebnik and
Williford [6]. It was recently resolved by Hou, Lappano and Lazebnik [14].

2 An algebraic hypersurface in a space of dimension n is an algebraic subvariety of dimension n − 1. The terminology from algebraic geometry used
throughout the article is standard, and can be found in [23].

3 We need p ≡ 3 (mod 4) for (1b) to get the correct number of Fp points on H . If p ≡ 1 (mod 4), then the right hand side of (1b) should be replaced by
a quadratic non-residue in Fp .

4 Henceforth, a statement is true for a generic point u ∈ Ps means that there exists a nonempty Zariski-open set U ⊂ Ps such that the statement is true
for every u ∈ U .
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