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a b s t r a c t

A resolving set for a graph Γ is a collection of vertices S, chosen so that for each vertex v,
the list of distances from v to the members of S uniquely specifies v. The metric dimension
µ(Γ ) is the smallest size of a resolving set for Γ . We consider the metric dimension of two
families of incidence graphs: incidence graphs of symmetric designs, and incidence graphs
of symmetric transversal designs (i.e. symmetric nets). These graphs are the bipartite
distance-regular graphs of diameter 3, and the bipartite, antipodal distance-regular graphs
of diameter 4, respectively. In each case, we use the probabilistic method in the manner
used by Babai to obtain bounds on themetric dimension of strongly regular graphs, and are
able to show that µ(Γ ) = O(

√
n log n) (where n is the number of vertices).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite, connected graphs with no loops or multiple edges. Let Γ denote a graph with vertex set V and edge
set E. A resolving set for Γ is a subset S ⊆ V with the property that, for any u ∈ V , the list of distances from u to each
of the elements of S uniquely identifies u; equivalently, for two distinct vertices u, w ∈ V , there exists x ∈ S for which
d(u, x) ̸= d(w, x). The metric dimension of Γ is the smallest size of a resolving set for Γ , and we denote this by µ(Γ ). These
notions were introduced to graph theory in the 1970s by Slater [28] and, independently, Harary and Melter [24]; in more
general metric spaces, the concept can be found in the literature much earlier (see [13]). For further details, the reader is
referred to the survey [8].

When studying metric dimension, distance-regular graphs are a natural class of graphs to consider. A graph Γ with
diameter d is distance-regular if, for all iwith 0 ≤ i ≤ d and any vertices u, w with d(u, w) = i, the number of neighbours of
w at distances i − 1, i and i + 1 from u depend only on the distance i, and not on the choices of u and w. These numbers are
denoted by ci, ai and bi, respectively, and are known as the parameters of Γ . It is easy to see that c0, bd are undefined, a0 = 0,
c1 = 1 and ci + ai + bi = k (where k is the valency of Γ ). We put the parameters into an array, called the intersection array
of Γ , {

∗ 1 c2 · · · cd−1 cd
0 a1 a2 · · · ad−1 ad
k b1 b2 · · · bd−1 ∗

}
.

Since the 2011 survey article by Cameron and the present author [8], which first proposed its systematic study, a number
of papers have been written on the subject of the metric dimension of distance-regular graphs (and on the related problem
of class dimension of association schemes), by the present author and others: see [5–7,9–11,17–23,25], for instance; earlier
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resultsmay be found in [3,4,15,16,27]. For background on distance-regular graphs in general, see the book of Brouwer, Cohen
and Neumaier [14] or the survey by van Dam, Koolen and Tanaka [29].

A distance-regular graph Γ with diameter d is primitive if, for 1 ≤ i ≤ d, the distance-i graphs of Γ are all connected;
otherwise, we say it is imprimitive. Imprimitive distance-regular graphs arise in one of two ways, provided that the valency
is at least 3: they may be bipartite (whereby the distance-2 graph has two connected components, called the halved graphs
of Γ ), or antipodal (where the distance-d graph is a disjoint union of cliques). We note that both possibilities may occur
in the same graph. Imprimitive distance-regular graphs may be reduced to primitive ones by the operations of halving (for
bipartite graphs) or folding (for antipodal graphs); see [14, § 4.2A] for details. If an imprimitive graph Γ has diameter d ≥ 3,
its halved or folded graphs have diameter ⌊d/2⌋.

The metric dimension of imprimitive distance-regular graphs was studied in detail in [6], where it was shown that it can
be bounded in terms of the metric dimension of the halved or folded graphs (see [6, § 2.1]). However, when the halved or
folded graphs are either complete or complete multipartite, the results are unsatisfactory; this is especially true from the
asymptotic perspective, as we obtain the trivial upper bound of O(n) (where n is the number of vertices). In this paper,
we consider bipartite distance-regular graphs of diameter 3, and distance-regular graphs of diameter 4 which are both
bipartite and antipodal. The former class is precisely equivalent to the incidence graphs of symmetric designs, which are
well-understood objects (see [26], for instance); the latter class is equivalent to the incidence graphs of symmetric transversal
designs, or equivalently symmetric nets, about which the literature is more sporadic.

1.1. Split resolving sets and semi-resolving sets

In [6], the present author introduced the following special type of resolving set for bipartite graphs.

Definition 1.1. Let Γ be a bipartite graph, whose vertex set has bipartition X ∪ Y . A split resolving set for Γ is a subset of
vertices S = SX ∪ SY , where SX ⊆ X and SY ⊆ Y , chosen so that any two vertices in X are resolved by a vertex in SY , and any
two vertices in Y are resolved by a vertex in SX . We call SX a semi-resolving set for Y and SY a semi-resolving set for X . We
denote the smallest size of a split resolving set by µ∗(Γ ).

We note that a split resolving set is itself a resolving set: any vertex of Γ will resolve a pair of vertices (x, y) where x ∈ X
and y ∈ Y , given that the parities of the distances to x and to y will be different, so we only need consider resolving pairs of
vertices in the same bipartite half. Consequently, we have µ(Γ ) ≤ µ∗(Γ ). We also note that complete bipartite graphs do
not have split resolving sets.

If we regard a bipartite graphΓ as an incidence graph, semi-resolving sets are of independent interest due to connections
with other objects associated with incidence structures, such as blocking sets in finite geometries; see [6,10,25] for more
details on this.

2. Symmetric designs

A symmetric design (or square 2-design) with parameters (v, k, λ) is a pairD = (X,B), where X is a set of v points, andB is a
family of k-subsets of X , called blocks, such that any pair of distinct points are contained in exactly λ blocks, and that any pair
of distinct blocks intersect in exactly λ points. It follows that |B| = v. A symmetric design with λ = 1 is a projective plane,
while a symmetric design with λ = 2 is known as a biplane. The incidence graph ΓD of a symmetric design D is the bipartite
graph with vertex set X ∪ B, with the point x ∈ X adjacent to the block B ∈ B if and only if x ∈ B. It is straightforward to
show that the incidence graph of a symmetric design is a bipartite distance-regular graph with diameter 3 and intersection
array {

∗ 1 λ k
0 0 0 0
k k − 1 k − λ ∗

}
.

The converse is also true (see [14, § 1.6]): any bipartite distance-regular graph of diameter 3 gives rise to a symmetric design.
The dual of a symmetric design is the design obtained from the incidence graph by reversing the roles of points and blocks;
both D and its dual have the same parameters.

The order of a symmetric design is defined to be q = k − λ; the following result is well-known (see [26, Proposition
2.4.12], for instance) and gives restrictions on v in terms of the order.

Proposition 2.1. For any (v, k, λ) symmetric design of order q = k − λ ≥ 2, we have

4q − 1 ≤ v ≤ q2 + q + 1.

The two extremes are achieved by Hadamard designs (where v = 4q− 1) and projective planes (where v = q2 + q+ 1).
The incidence graphs of symmetric designs are precisely the bipartite distance-regular graphs of diameter 3; the metric

dimension of these graphs is considered in [6]. However, the general results of [6] for bipartite distance-regular graphs are
not very effective in the diameter 3 case, as the halved graphs are complete graphs, so an alternative approach was required.
First, in the case where k = v − 1 (or, equivalently, where the order is q = k − λ = 1), the incidence graph is Kv,v − I ,
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