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a b s t r a c t

We prove new upper bounds for the thickness and outerthickness of a graph in terms of
its orientable and nonorientable genus by applying the method of deleting spanning disks
of embeddings to approximate the thickness and outerthickness. We also show that every
non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar
graph. This implies that the outerthickness of the torus (the maximum outerthickness of
all toroidal graphs) is 3. Finally, we show that all graphs embeddable in the double torus
have thickness at most 3 and outerthickness at most 5.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and terminology

An outerplanar graph is a planar graph that can be embedded in the plane without crossing edges, in such a way that
all the vertices are incident with the same face. The thickness of a graph G, denoted by θ (G) (first defined by Tutte [19]), is
the minimum number of planar subgraphs whose union is G. Similarly, the outerthickness θo(G) is obtained when ‘‘planar
subgraphs’’ is replaced by ‘‘outerplanar subgraphs’’ in the previous definition. If Σ is a surface, define θ (Σ) = max {θ (G) : G
is embeddable in Σ}, where the maximum is taken over all graphs embeddable in Σ . Define θo(Σ) analogously.

Much work has been done in partitioning the edges of graphs such that each subset induces a subgraph of a certain
type. A well-known result by Nash–Williams [17] gives a necessary and sufficient condition for a graph to admit an edge-
partition into a fixed number of forests. His results show that any planar graph can be edge-partitioned into three forests,
and any outerplanar graph into two forests. Much research has been devoted to partitioning the edges into planar graphs
(to determine the thickness of graphs) and outerplanar graphs (to determine the outerthickness of graphs). The thickness
of some special classes of graphs has been determined, including the complete graphs Kn [1,20] (see (1.1)), the complete
bipartite graphs Km,n [3] (except possibly if m and n are both odd, or m ≤ n and n takes some special values), and the
hypercube Qn [13]. See the survey paper [16] for more results on the thickness of graphs. Guy and Nowakowski [9,10]
determined the outerthickness of complete graphs (see (1.2)), the hypercube and some complete bipartite graphs. For
complete graphs, the results are

θ (Kn) =

{
⌊
n + 7
6

⌋, if n ̸= 9, 10,
3, otherwise,

(1.1)

and

θo(Kn) =

{
⌈
n + 1
4

⌉, if n ̸= 7,
3, n = 7.

(1.2)
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It is known that the thickness problem isNP-hard [14]. For many other classes of graphs, attention has been focused on
finding upper bounds of thickness and outerthickness. Jünger et al. [11] have shown that a graph has thickness at most 2 if
it contains no K5-minor. Asano [2] proved that, if a graph G is triangle free and has orientable genus γ , then θ (G) ≤ γ (G)+1.
He also showed that all toroidal graphs have thickness at most 2. Dean and Hutchinson [5] strengthened Asano’s result by
proving that θ (G) ≤ 6 +

√
2γ (G) − 1.

In 1971, Chartrand, Geller and Hedetniemi [4] conjectured that every planar graph has an edge partition into two
outerplanar graphs. Ding, Oporowski, Sanders and Vertigan [6] proved that every planar graph has an edge partition into
two outerplanar graphs and a vee-forest, where a vee-forest is the disjoint union of a number of K2’s and K1,2’s. They also
showed that every graph with nonnegative Euler characteristic has an edge partition into two graphs of tree-width at most
three. Kedlaya [12] showed that some planar graphs cannot be edge-partitioned into two outerplanar subgraphs such that
one of them is outerplanarly embedded. In 2005 Gonçalves [7,8] announced that he had solved the Chartrand, Geller and
Hedetniemi’s conjecture.

In this paper, we first provide some technical results in Section 2. We introduce the technique of deleting maximal
spanning disks for embeddings of graphs. We also introduce essential edges with respect to spanning disks of embeddings,
and the corresponding noncontractible nonhomotopic loop systemof surfaces. Applying these techniqueswe provide results
on thickness and outerthickness to (i) improve Dean and Hutchinson’s upper bounds for graphs in terms of their orientable
and nonorientable genus (Section 3), and (ii) obtain upper bounds for outerthickness of graphs in terms of their orientable
and nonorientable genus (Section 3). Moreover we prove that (iii) every non-planar toroidal graph can be edge partitioned
into a planar graph and an outerplanar graph. We (iv) improve Asono’s result by dropping his triangle free condition
(Section 4), and (v) obtain upper bounds of thickness and outerthickness for graphs embeddable in double torus and triple
torus (Section 4).

2. Technical results

We prove some technical and structural results in this section. The following is obvious.

Lemma 2.1. If G is a subgraph of H, then θ (G) ≤ θ (H) and θo(G) ≤ θo(H).

Lemma 2.1 may not be true if the subgraph relation is replaced by theminor relation, i.e., if G is a minor of H , it is possible
that θ (G) > θ (H) and θo(G) > θo(H). This may add difficulty to problems of finding thickness and outerthickness since many
techniques and results on the minor relation cannot be applied here.

Since adding multiple edges to a graph G does not increase the thickness/outerthickness of G, and the thickness/
outerthickness of a graph is equal to the maximum thickness/outerthickness of its blocks, we may assume that graphs are
simple and 2-connected. Let Sg be the orientable surface with genus g (the sphere with g handles, g ≥ 0) and Nk be the
nonorientable surface with nonorientable genus k (the sphere with k crosscaps, k ≥ 1). Suppose C is a cycle of a graph
embedded in surface Σ , and x and y are two vertices on C . We assign a direction to C and define xCy to be the open path
from x to y in this direction.

In order to study thickness/outerthickness of graphs embedded in surfaces, we apply Lemma 2.1 by adding edges to the
embedding of G to obtain a spanning supergraph H of G then study the thickness/outerthickness of H . In this way we obtain
a better structure of embeddings.

Let G be a graph and Ψ (G) be an embedding of G in a surface Σ . A subembedding Ψ s is spanning if it contains all
vertices of G. A spanning subembedding is contractible if it does not contain any noncontractible cycle of Ψ (G). In particular
a contractible spanning subembedding is a spanning disk if it is homeomorphic to a closed disk, in which case the boundary
of this spanning subembedding is a contractible cycle of Ψ (G). For any embedding, a spanning tree is always a contractible
spanning subembedding. However, an embedding needs not contain a spanning disk. An example is the unique embedding of
the Heawood graph in the torus which is the dual embedding of K7. It contains no spanning disk even though the embedding
is 3-representative (or equivalently, a polyhedral embedding, or a wheel-neighborhood embedding). An edge e is essential,
with respect to a contractible spanning subembedding Ψ s if e ∪ Ψ s contains a noncontractible cycle. Note that if e is an
essential edge then e is contained in every noncontractible cycle of e∪Ψ s. An essential edge becomes a noncontractible loop
if Ψ s is contracted to a single point.

Lemma 2.2. Let G be a simple graph and Ψ (G) be an orientable genus embedding or a minimal surface embedding (i.e., with
maximum Euler characteristic) of G in Σ . Then either Ψ (G) contains a spanning disk, or there is a supergraph H with embedding
Ψ (H) in Σ such that H is simple, V (H) = V (G), Ψ (G) is a subembedding of Ψ (H), and Ψ (H) contains a spanning disk.

Proof. Let Ψ (G) be an orientable genus embedding or a minimal surface embedding of G in Σ . Clearly, any embedding in
Σ containing Ψ (G) as a subembedding is an orientable genus embedding or a minimal surface embedding. We start with
a spanning tree T of G, and add more faces to T such that the resulting subembedding R is maximal (with as many faces as
possible) and contractible (but may not be homeomorphic to a disk, e.g., with cut vertices). We then either add new edges
to R one by one or change the embedding by re-embedding some edges such that the resulting graph is a supergraph G+ of
Gwith the same vertex set, and has a spanning region R+ which is contractible. We do not add multiple edges to G, and thus
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