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Equivalence

1. Introduction and results

Quasi-Cartan matrices are present in many areas of mathematics. The motivation is based on the classical theory of
complex semi-simple Lie algebras, (see [12]). These algebras can be characterized by a base of the root system from which
a Cartan matrix is obtained. A symmetrizer of a matrix A is an integer diagonal matrix D with positive diagonal entries such
that DA is symmetric. If A has a symmetrizer D then A is called symmetrizable (D is not unique). Following [6], by a quasi-
Cartan matrix of size n > 2 we mean a square n x n matrix A = [A;] € M,(Z) with integer coefficients A; such that A is
symmetrizable and A; = 2, for all i. The set of all quasi Cartan matrices A € M,(Z) is denoted by qC. We say that a matrix
A € qC C M, (Z) is positive definite, if the symmetric matrix DA € M,(Z) C M,(R) is positive definite, for some symmetrizer
D. The set of all positive definite quasi-Cartan matrices A € qC € M,(Z) is denoted by qC". We note that a matrix A € qC*
is a Cartan matrix if A; < O for all pairs i, j with i # j. The quasi-Cartan matrices A, A" € qC C Mjy(Z) are defined to be
Z-equivalent (we denote it by A ~ A’) if there exists a Z-invertible matrix E € M,(Z) and symmetrizers D, D' € M,(Z) such
that D’A’ = EY(DA)E and D' is conjugate to D by a permutation matrix. For general purposes, it will be convenient to switch
to a more graphical language.

Following [7], by a mixed graph we mean the triple G = (V, &, A) that consists of a set V # ¢ of vertices, a set £ of edges
(undirected) and a set A of arrows. In this paper, a bigraph B is a mixed graph G together with a function w : £U A — Z that
assigns to every e € £ U A an integer number called the weight of e. A vertex v € V is a source (respectively sink) vertex if
for all a;; € A the vertex i (respectively j) is equal to v and e,;, e;, & .

Definition 1.1. To each quasi-Cartan matrix A € qC € M,(Z), with n > 2, we associate its bigraph By = (V, &, A, w), with
n vertices, as follows:
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Fig. 1. Dynkin diagrams.

e V={1,2,...,n}
o & ={e;|i,je vwithi#jand|A;| = |A;| # 0}
o A={ay|i,je Vwithi#jand |Aj] < |A;l}
o foreache € £U A, we set w(e) = Aj;, where |A;| < |Ajil.

Notice that from Definition 1.1 the sets £ and A are disjoint. A path P in B, from vertex v; to vertex v, is a subgraph
P = vqv, ... v, induced in B4 by the set of vertices v; € V where for alli, 1 < i < r the vertices v; are pairwise distinct and
there exists e € £ U A between the vertices v; and viyq. We say that B, is connected if there exists a path from v; to v; for
all vi, v; € V [7]. A chordless cycle is a connected induced sub-bigraph such that every vertex is adjacent with exactly two
vertices. A bigraph B, satisfies the chordless cycle condition if every induced chordless cycle of B4 has an odd number of dotted
connections (edges or arrows). Every bigraph B, associated to a quasi-Cartan matrix A can be represented as a diagram of
dots (vertices in By), lines and arrows (solid and dotted). All edges and arrows are represented as follows: if e; € £ then
e is indicated by a dotted line with weight w, i-®-j if w(e;) > 0, and solid i-“~j if w(e;) < 0. Similarly for a; € A, g; is
indicated by a dotted arrow i-“>j if w(a;) > 0, and solid i-*~j if w(a;) < 0. We denote by &(A) the frame of a quasi-Cartan
matrix A, that is, the graph obtained from B, by turning all broken edges and broken arrows into solid ones [3]. A frame @ (A)
is called positive if A is a positive definite matrix. Throughout this paper, all the solid (dotted) arrows are considered with
o = —2 (w = 2) unless otherwise indicated, and no distinction is made between the bigraph B, and its diagram.

Example 1.2. A quasi-Cartan matrix and its associated bigraph.

2 01 1 -1 0 2.
1 2 1 -1 0 / 21
11 2 -1 0 o
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If Ais a Cartan matrix, the bigraph By is actually a bigraph with w(e) < Oforalle € £U.4, moreover if A is connected (i.e. B4
is connected ) then By is known as Dynkin diagram (see Fig. 1). From now on, we will only consider connected matrices.

IfA’ € M,(Z)is a connected quasi-Cartan in qC*,and A, is a Cartan matrix such that A’ ~ A,, then A will be referred to be
the Dynkin type of By, that is, the Dynkin diagram associated to A, . The existence of the Cartan matrix A, such that A’ ~ A,
will be proved in the Section 2, see also [13], a proof for the symmetric case is given in [8]. It follows that two connected
matrices in qC* with the same Dynkin type are Z-equivalent; therefore, it is important to have a simple characterization of
positive definite connected quasi-Cartan matrices. For this purpose we study in the following paragraph some graphical and
combinatorial aspects for the various parameters characterizing the Dynkin types of positive definite connected quasi-Cartan
matrices.

Let X and Y be disjoint sets of vertices. We denote by F[X, Y] the non-separable bigraph obtained by joining each pair
of vertices x, y with x € X and y € Y by a solid edge, and all other pairs of vertices by a dotted edge; such bigraph is called
an A-block, see [2], [1]. If v is a vertex in F[X, Y] and |[X U Y| > 2, we denote by F, [X, Y] (F, [X, Y]) and we call B-block
(C-block) to the bigraph obtained from F[X, Y] after substituting every solid or dott_e)d edge oyerv by a solid or dotted arrow
pointing to (coming out of) the vertex v. The vertex v is the sink (source) vertex of F, [X, Y] (F, [X, Y]). In both cases, we call
to vertex v a distinguished vertex. (See Fig. 2.)

LetG=(V, & A w),G =W,&, A, ) Then, we define the sumof Gand G byGH G = (VU V', £", A”, ") where:

w(e), ife e (£\ €)UA\ A)
w'(e) = {w'(e), ifee(E'\e)U(A\ A)
w'(e) +wle), ifee(eNnEHUuANA)
g'=Eug)\leeene | o(e)+we)=0and A" = (AUA)\{eec AN A | &'(e)+ w(e)=0}.
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