Graphical characterization of positive definite non symmetric quasi-Cartan matrices

Claudia Pérez, Daniel Rivera*
Centro de Investigación en Ciencias-(IICBA), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico

ARTICLE INFO

Article history:

Received 27 February 2017
Received in revised form 12 January 2018
Accepted 15 January 2018
Available online 22 February 2018

Keywords:

Non symmetric quasi-Cartan matrix
Dynkin diagram
Assemblage
Equivalence

Abstract

It is known that each positive definite quasi-Cartan matrix A is \mathbb{Z}-equivalent to a Cartan matrix A_{Δ} called Dynkin type of A, the matrix A_{Δ} is uniquely determined up to conjugation by permutation matrices. However, in most of the cases, it is not possible to determine the Dynkin type of a given connected quasi-Cartan matrix by simple inspection. In this paper, we give a graph theoretical characterization of non-symmetric connected quasiCartan matrices. For this purpose, a special assemblage of blocks is introduced. This result complements the approach proposed by Barot $(1999,2001)$, for $\mathbb{A}_{n}, \mathbb{D}_{n}$ and \mathbb{E}_{m} with $m=$ $6,7,8$.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and results

Quasi-Cartan matrices are present in many areas of mathematics. The motivation is based on the classical theory of complex semi-simple Lie algebras, (see [12]). These algebras can be characterized by a base of the root system from which a Cartan matrix is obtained. A symmetrizer of a matrix A is an integer diagonal matrix D with positive diagonal entries such that $D A$ is symmetric. If A has a symmetrizer D then A is called symmetrizable (D is not unique). Following [6], by a quasiCartan matrix of size $n \geq 2$ we mean a square $n \times n$ matrix $A=\left[A_{i j}\right] \in \mathbb{M}_{n}(\mathbb{Z})$ with integer coefficients $A_{i j}$ such that A is symmetrizable and $A_{i i}=2$, for all i. The set of all quasi Cartan matrices $A \in \mathbb{M}_{n}(\mathbb{Z})$ is denoted by $\mathbf{q C}$. We say that a matrix $A \in \mathbf{q C} \subseteq \mathbb{M}_{n}(\mathbb{Z})$ is positive definite, if the symmetric matrix $D A \in \mathbb{M}_{n}(\mathbb{Z}) \subset \mathbb{M}_{n}(\mathbb{R})$ is positive definite, for some symmetrizer D. The set of all positive definite quasi-Cartan matrices $A \in \mathbf{q C} \subseteq \mathbb{M}_{n}(\mathbb{Z})$ is denoted by $\mathbf{q} \mathbf{C}^{+}$. We note that a matrix $A \in \mathbf{q C}^{+}$ is a Cartan matrix if $A_{i j} \leq 0$ for all pairs i, j with $i \neq j$. The quasi-Cartan matrices $A, A^{\prime} \in \mathbf{q C} \subseteq \mathbb{M}_{n}(\mathbb{Z})$ are defined to be \mathbb{Z}-equivalent (we denote it by $A \sim A^{\prime}$) if there exists a \mathbb{Z}-invertible matrix $E \in \mathbb{M}_{n}(\mathbb{Z})$ and symmetrizers $D, D^{\prime} \in \mathbb{M}_{n}(\mathbb{Z})$ such that $D^{\prime} A^{\prime}=E^{t}(D A) E$ and D^{\prime} is conjugate to D by a permutation matrix. For general purposes, it will be convenient to switch to a more graphical language.

Following [7], by a mixed graph we mean the triple $G=(\mathcal{V}, \mathcal{E}, \mathcal{A})$ that consists of a set $\mathcal{V} \neq \emptyset$ of vertices, a set \mathcal{E} of edges (undirected) and a set \mathcal{A} of arrows. In this paper, a bigraph B is a mixed graph G together with a function $\omega: \mathcal{E} \cup \mathcal{A} \rightarrow \mathbb{Z}$ that assigns to every $e \in \mathcal{E} \cup \mathcal{A}$ an integer number called the weight of e. A vertex $v \in \mathcal{V}$ is a source (respectively sink) vertex if for all $a_{i j} \in \mathcal{A}$ the vertex i (respectively j) is equal to v and $e_{v j}, e_{i v} \notin \mathcal{E}$.

Definition 1.1. To each quasi-Cartan matrix $A \in \mathbf{q C} \subseteq \mathbb{M}_{n}(\mathbb{Z})$, with $n \geq 2$, we associate its bigraph $B_{A}=(\mathcal{V}, \mathcal{E}, \mathcal{A}$, ω), with n vertices, as follows:

[^0]$\mathbb{A}_{n}, n \geq 1 \circ-\mathrm{O}-\cdots-\mathrm{O}$

$\mathbb{C}_{n}, n \geq 3$ ○——— \cdots -
$\mathbb{D}_{n}, n \geq 4$ O-O- $\cdots=-$
$\mathbb{E}_{8} \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
\mathbb{E}_{6}

$\mathbb{G}_{2} \quad \mathrm{O}^{3} \mathrm{O}$

Fig. 1. Dynkin diagrams.

- $\mathcal{V}=\{1,2, \ldots, n\}$
- $\mathcal{E}=\left\{e_{i j} \mid i, j \in \mathcal{V}\right.$ with $i \neq j$ and $\left.\left|A_{i j}\right|=\left|A_{j i}\right| \neq 0\right\}$
- $\mathcal{A}=\left\{a_{i j} \mid i, j \in \mathcal{V}\right.$ with $i \neq j$ and $\left.\left|A_{i j}\right|<\left|A_{j i}\right|\right\}$
- for each $e \in \mathcal{E} \cup \mathcal{A}$, we set $\omega(e)=A_{j i}$, where $\left|A_{i j}\right| \leq\left|A_{j i}\right|$.

Notice that from Definition 1.1 the sets \mathcal{E} and \mathcal{A} are disjoint. A path P in B_{A} from vertex v_{1} to vertex v_{r} is a subgraph $P=v_{1} v_{2} \ldots v_{r}$ induced in B_{A} by the set of vertices $v_{i} \in \mathcal{V}$ where for all $i, 1 \leq i \leq r$ the vertices v_{i} are pairwise distinct and there exists $e \in \mathcal{E} \cup \mathcal{A}$ between the vertices v_{i} and v_{i+1}. We say that B_{A} is connected if there exists a path from v_{i} to v_{j} for all $v_{i}, v_{j} \in \mathcal{V}$ [7]. A chordless cycle is a connected induced sub-bigraph such that every vertex is adjacent with exactly two vertices. A bigraph B_{A} satisfies the chordless cycle condition if every induced chordless cycle of B_{A} has an odd number of dotted connections (edges or arrows). Every bigraph B_{A} associated to a quasi-Cartan matrix A can be represented as a diagram of dots (vertices in B_{A}), lines and arrows (solid and dotted). All edges and arrows are represented as follows: if $e_{i j} \in \mathcal{E}$ then $e_{i j}$ is indicated by a dotted line with weight $\omega, i^{\omega}{ }^{\omega}$ if $\omega\left(e_{i j}\right)>0$, and solid $i \stackrel{\omega}{\omega}$ if $\omega\left(e_{i j}\right)<0$. Similarly for $a_{i j} \in \mathcal{A}$, $a_{i j}$ is indicated by a dotted arrow $i \cdots \stackrel{\omega}{\bullet} \cdot j$ if $\omega\left(a_{i j}\right)>0$, and solid $i \stackrel{\omega}{\longrightarrow}$ if $\omega\left(a_{i j}\right)<0$. We denote by $\Phi(A)$ the frame of a quasi-Cartan matrix A, that is, the graph obtained from B_{A} by turning all broken edges and broken arrows into solid ones [3]. A frame $\Phi(A)$ is called positive if A is a positive definite matrix. Throughout this paper, all the solid (dotted) arrows are considered with $\omega=-2(\omega=2)$ unless otherwise indicated, and no distinction is made between the bigraph B_{A} and its diagram.

Example 1.2. A quasi-Cartan matrix and its associated bigraph.

$$
\left(\begin{array}{cccccc}
2 & 1 & 1 & -1 & 0 & 0 \\
1 & 2 & 1 & -1 & 0 & 0 \\
1 & 1 & 2 & -1 & 0 & 0 \\
-1 & -1 & -1 & 2 & 1 & -2 \\
0 & 0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & -1 & -1 & 2
\end{array}\right)
$$

If A is a Cartan matrix, the bigraph B_{A} is actually a bigraph with $\omega(e)<0$ for all $e \in \mathcal{E} \cup \mathcal{A}$, moreover if A is connected (i.e. B_{A} is connected) then B_{A} is known as Dynkin diagram (see Fig. 1). From now on, we will only consider connected matrices.

If $A^{\prime} \in \mathbb{M}_{n}(\mathbb{Z})$ is a connected quasi-Cartan in $\mathbf{q} \mathbf{C}^{+}$, and A_{Δ} is a Cartan matrix such that $A^{\prime} \sim A_{\Delta}$, then Δ will be referred to be the Dynkin type of B_{A}, that is, the Dynkin diagram associated to A_{Δ}. The existence of the Cartan matrix A_{Δ} such that $A^{\prime} \sim A_{\Delta}$ will be proved in the Section 2, see also [13], a proof for the symmetric case is given in [8]. It follows that two connected matrices in $\mathbf{q C}^{+}$with the same Dynkin type are \mathbb{Z}-equivalent; therefore, it is important to have a simple characterization of positive definite connected quasi-Cartan matrices. For this purpose we study in the following paragraph some graphical and combinatorial aspects for the various parameters characterizing the Dynkin types of positive definite connected quasi-Cartan matrices.

Let X and Y be disjoint sets of vertices. We denote by $F[X, Y]$ the non-separable bigraph obtained by joining each pair of vertices x, y with $x \in X$ and $y \in Y$ by a solid edge, and all other pairs of vertices by a dotted edge; such bigraph is called an \mathbb{A}-block, see [2], [1]. If v is a vertex in $F[X, Y]$ and $|X \cup Y| \geq 2$, we denote by $\overrightarrow{F_{v}}[X, Y]\left(\overleftarrow{F_{v}}[X, Y]\right)$ and we call \mathbb{B}-block (\mathbb{C}-block) to the bigraph obtained from $F[X, Y]$ after substituting every solid or dotted edge over v by a solid or dotted arrow pointing to (coming out of) the vertex v. The vertex v is the sink (source) vertex of $\overrightarrow{F_{v}}[X, Y]\left(\overleftarrow{F_{v}}[X, Y]\right)$. In both cases, we call to vertex v a distinguished vertex. (See Fig. 2.)

Let $G=(\mathcal{V}, \mathcal{E}, \mathcal{A}, \omega), G^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}, \mathcal{A}^{\prime}, \omega^{\prime}\right)$. Then, we define the sum of G and G^{\prime} by $G \oplus G^{\prime}=\left(\mathcal{V} \cup \mathcal{V}^{\prime}, \mathcal{E}^{\prime \prime}, \mathcal{A}^{\prime \prime}, \omega^{\prime \prime}\right)$ where:

$$
\begin{gathered}
\omega^{\prime \prime}(e)=\left\{\begin{array}{l}
\omega(e), \text { if } e \in\left(\mathcal{E} \backslash \mathcal{E}^{\prime}\right) \cup\left(\mathcal{A} \backslash \mathcal{A}^{\prime}\right) \\
\omega^{\prime}(e), \text { if } e \in\left(\mathcal{E}^{\prime} \backslash \mathcal{E}\right) \cup\left(\mathcal{A}^{\prime} \backslash \mathcal{A}\right) \\
\omega^{\prime}(e)+\omega(e), \text { if } e \in\left(\mathcal{E} \cap \mathcal{E}^{\prime}\right) \cup\left(\mathcal{A} \cap \mathcal{A}^{\prime}\right)
\end{array}\right. \\
\mathcal{E}^{\prime \prime}=\left(\mathcal{E} \cup \mathcal{E}^{\prime}\right) \backslash\left\{e \in \mathcal{E} \cap \mathcal{E}^{\prime} \mid \omega^{\prime}(e)+\omega(e)=0\right\} \text { and } \mathcal{A}^{\prime \prime}=\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right) \backslash\left\{e \in \mathcal{A} \cap \mathcal{A}^{\prime} \mid \omega^{\prime}(e)+\omega(e)=0\right\} .
\end{gathered}
$$

https://daneshyari.com/en/article/8902985

Download Persian Version:

https://daneshyari.com/article/8902985

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: darivera@uaem.mx (D. Rivera).

