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a b s t r a c t

For nonnegative integers n2, n3 and d, let N(n2, n3, d) denote the maximum cardinality of
a code of length n2 + n3, with n2 binary coordinates and n3 ternary coordinates (in this
order) and with minimum distance at least d. For a nonnegative integer k, let Ck denote
the collection of codes of cardinality at most k. For D ∈ Ck, define S(D) := {C ∈ Ck |

D ⊆ C, |D| + 2|C \ D| ≤ k}. Then N(n2, n3, d) is upper bounded by the maximum
value of

∑
v∈[2]n2 [3]n3 x({v}), where x is a function Ck → R such that x(∅) = 1 and

x(C) = 0 if C has minimum distance less than d, and such that the S(D) × S(D) matrix
(x(C ∪ C ′))C,C ′∈S(D) is positive semidefinite for each D ∈ Ck. By exploiting symmetry, the
semidefinite programming problem for the case k = 3 is reduced using representation
theory. It yields 135 new upper bounds that are provided in tables.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let Z+ be the set of nonnegative integers, and let [n] = {1, . . . , n}, for any n ∈ Z+. Let n2, n3 ∈ Z+ be fixed. Then a
mixed binary/ternary code is a subset of [2]n2 [3]n3 . Mixed codes are of interest because of their application to football pools,
see for instance [6]. Whenever [n] consists of the letters of an alphabet of a code, we take the letters mod n. Since all codes
considered in this paper are mixed, i.e., both n2 > 0 and n3 > 0, we will speak of codes from now on. An element of a code
is called a codeword or word.

Given two words v, w ∈ [2]n2 [3]n3 , the Hamming distance dH (v, w) between v and w is the number of positions
i ∈ [n2 + n3] for which vi ̸= wi. The Hamming distance between a word v and the all-zero word is called the weight
of v, denoted w(v). For a code C , the minimum distance of C is equal to the minimum of dH (v, w), where we range over
distinct v, w ∈ C . Note that with this definition, the empty code and codes of size one do not have a minimum distance. The
maximum cardinality of a code with minimum distance at least d is denoted by N(n2, n3, d). We will define a hierarchy of
upper bounds on N(n2, n3, d) that sharpens the linear programming bound defined in [2].

For k ∈ Z+, let Ck denote the collection of codes of cardinality at most k. For D ∈ Ck, define S(D) := {C ∈ Ck | D ⊆

C, |D| + 2|C \ D| ≤ k}. Note that |C ∪ C ′
| ≤ k, for C, C ′

∈ S(D). For each function x : Ck → R, and for each D ∈ Ck, define the
S(D) × S(D) matrix MD(x) = (x(C ∪ C ′))C,C ′∈S(D). Then we define

Nk(n2, n3, d) := max
x

∑
v∈[2]n2 [3]n3

x({v}),where x : Ck → R satisfies (1)

(i) x(∅) = 1,
(ii) x(C) = 0 if the minimum distance of C is less than d,
(iii) MD(x) is positive semidefinite for each D ∈ Ck.
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Observe that for a code D of size k, positive semidefiniteness ofMD(x) is equivalent to nonnegativity of x(D). Hence, in (1),
we could as well assume that x : Ck → R+.

Proposition 1.1. For n2, n3, d, k ∈ Z+, it holds that N(n2, n3, d) ≤ Nk(n2, n3, d).

Proof. Let D ⊆ [2]n2 [3]n3 be of minimum distance at least d, such that |D| = N(n2, n3, d). Define x : Ck → R by x(C) = 1 if
C ⊆ D and x(C) = 0 otherwise. This function clearly satisfies conditions (i) and (ii) of (1). Since (MD(x))C,C ′ = x(C)x(C ′) for
all C, C ′

∈ Ck, condition (iii) is also satisfied. Now
∑

v∈[2]n2 [3]n3 x({v}) = |D| = N(n2, n3, d), and the proposition follows. □

In this paper, we consider k = 3. The optimization problem (1) for triples of codewords is very large. However, the
problem is highly symmetric and therefore representation theory of the symmetric group can be applied in order to reduce
the dimensions to size bounded by a polynomial in n2 and n3. This enables us to solve (1) by semidefinite programming for
many choices of triples (n2, n3, d) ∈ N3. We will now describe the ideas of the reduction. The precise details may be found
in Section 3.

LetG be the isometry group of [2]n2 [3]n3 . That is,G is the group of Hamming distance-preserving bijections from [2]n2 [3]n3
to itself. Then G = H2 ×H3, whereH2 is the wreath product Sn22 ⋊Sn2 andH3 is the wreath product Sn33 ⋊Sn3 . Here, Sm denotes
the symmetric group on m letters. For i = 2, 3, an element h ∈ Hi permutes the ni coordinates and permutes the letters
in [i] in every of the ni positions. The group G acts on Ck and hence on functions x : Ck → R, via xπ (C) := x(π−1(C)), for
π ∈ G and C ∈ Ck. By definition of G, minimum distances of codes are preserved under this action. Let x : Ck → R be a
function satisfying the conditions and maximizing the objective function of (1). For π ∈ G, the function xπ again satisfies
conditions (i) and (ii) of (1). Condition (iii) is met as well, as the matrix MD(xπ ) is obtained from MD(x) by simultaneously
permuting rows and columns. Since π is a bijection of [2]n2 [3]n3 , the objective function does not change when replacing x
by xπ . Averaging over the group G yields a G-invariant function y, for which the matricesMD(y) are positive semidefinite by
convexity of the set of positive semidefinite matrices. This shows that the optimal function x can be taken to be G-invariant.

Let Ω be the set of orbits of Ck under the action of G. Since a G-invariant function y is constant on orbits, for each D ∈ Ck
the matrixMD(y) can be written in terms of variables y(w), with w ∈ Ω . Let GD be the subgroup of G that leaves D invariant.
ThenMD(y) is invariant under the induced action of GD on its rows and columns. Therefore, it admits a block-diagonalization
MD(y) ↦→ UTMD(y)U , where U is a matrix independent of y (see Eq. (3)). ThematrixMD(y) is positive semidefinite if and only
if each of the blocks is. This accounts for a large reduction as the blocks have far less entries than the original matrix, and the
same block occurs repeatedly.

For D ∈ Ck and π ∈ G, the matrix MD(y) differs from Mπ (D)(y) by a permutation matrix. Hence, positive semidefiniteness
of MD(y) needs only be checked for one element D out of each G-orbit of Ck. Throwing away equivalent blocks, we are left
with blocks whose entries are linear functions in the variables y(w). The number of variables is bounded by a polynomial in
n2 and n3, see Section 4.1.

The blocks as well as some further reductions of the optimization problem will be described in Section 3. The entries of
the matrices are computed in Section 4. Table 1 at the end of the article shows the improvements that were found using the
multiple precision versions of the semidefinite programming algorithm SDPA, with thanks to SURFsara (www.surfsara.nl)
for the support in using the LISA Compute Cluster.

Several previously best known upper bounds were obtained via linear programming and extra constraints in [2] by
Brouwer, Hämäläinen, Östergård and Sloane. For d = 3 and d = 4, improvements were found by Östergård using backtrack
search in [9] and [8] respectively. The tables in [1], maintained by Andries Brouwer, contain all known bounds on the size of
binary/ternary error-correcting codes.

1.1. Comparison with earlier bounds

The above described method is an adaption of the one in [7] and builds upon the work of Gijswijt, Mittelmann, Schrijver
and Tanaka in [4,5,11]. Proposition 1.1 generalizes Proposition 1 of [7] for the binary and ternary case. In fact, for fixed
t ∈ Z+ and distinct p1, . . . , pt ∈ N, the statement in Proposition 1.1 can be generalized to the case of mixed codes of length
n1 + · · · + nt , with ni coordinates chosen from an alphabet with pi letters, for i = 1, . . . , t .

The method described in the previous section (with k = 3) fits into the second level of the Lasserre hierarchy for stable
sets. It can be proved that for k = 2, Proposition 1.1 reduces to the pure linear programming bound described in Section 2
of [2].

Theoretically, our method could be extended to k ≥ 4. However, the number of variables involved in the semidefinite
program grows rapidly when going from k = 3 to k = 4. In practice, for k = 4 only one case could be made tractable.
Furthermore, the instances in the tables in [1] where the value N(n2, n3, d) is yet unsettled, typically involve codes for which
the length n2 + n3 is large compared to the distance d. This amounts to many and large constraint matrices.

2. Preliminaries on representation theory

In this section some background information on group actions and representation theory of finite groups is given. It
mostly concerns representation theory of the symmetric group. Proofs and details of the statements given are omitted. For
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