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a b s t r a c t

A set system F is intersecting if for any F , F ′
∈ F , F ∩ F ′

̸= ∅. A fundamental theorem of
Erdős, Ko and Rado states that ifF is an intersecting family of r-subsets of [n] = {1, . . . , n},
and n ≥ 2r , then |F| ≤

(n−1
r−1

)
. Furthermore, when n > 2r , equality holds if and only if F

is the family of all r-subsets of [n] containing a fixed element. This was proved as part of
a stronger result by Hilton and Milner. In this note, we provide new injective proofs of the
Erdős–Ko–Rado and the Hilton–Milner theorems.

© 2018 Elsevier B.V. All rights reserved.

1. The Erdős–Ko–Rado theorem

For 0 ≤ j ≤ n, let [j, n] = {j, . . . , n}. In particular, set [n] = [1, n]. Similarly, define (j, n) = {j + 1, . . . , n − 1}. For a set
X and 1 ≤ r ≤ |X |, denote 2X

= {A : A ⊆ X} and
(X
r

)
= {A ∈ 2X

: |A| = r}. A family F ⊆
(
[n]
r

)
is called r-uniform, with

Fx = {F ∈ F : x ∈ F} called its star centered at x. A full star is
(
[n]
r

)
x for some x; it is easy to see that |

(
[n]
r

)
x| =

(n−1
r−1

)
. We say

that F is intersecting if A ∩ B ̸= ∅ for every A, B ∈ F .
One of the central results in extremal set theory, the Erdős–Ko–Rado theorem finds a tight upper bound on the size of

uniform intersecting set systems. As part of a stronger result that characterized the size and structure of the ‘‘second best’’
intersecting set systems, Hilton and Milner [14] proved that the extremal structures are essentially (up to isomorphism)
unique.

Theorem 1 ([7,14]). If 1 ≤ r ≤ n/2 and F ⊆
(
[n]
r

)
is intersecting, then |F| ≤

(n−1
r−1

)
. If r < n/2 then equality holds if and only if

F =
(
[n]
r

)
x for some x ∈ [n].

A cornerstone of extremal combinatorics, the theorem has inspired a multitude of research avenues and applications
(see [6,8,12,13,15]). The original proof by Erdős, Ko and Rado made use of the now-central shifting technique in conjunction
with an induction argument. Daykin [5] later discovered that the theorem is implied by the Kruskal–Katona theorem [17,20],
while Katona [18] gave possibly the simplest proof using the notion of cyclic permutations. Most recently, Frankl and
Füredi [10] provided another new short proof of the theorem using a non-trivial result of Katona [16] on shadows of
intersecting families.
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The new proof we provide is closest in spirit to the original proof, but avoids induction and counting, and is as short
as any. It relies on the shifting operation and some of its structural properties to construct an injective function that maps
any intersecting family to a subfamily of

(
[n]
r

)
1. While the shifting operation is injective, it is not explicitly so; that is, the

shift operation on a set depends on the entire family. However, our new injection for shifted families is explicit. By direct
comparison, while the approach of [10] uses an explicit complementation followed by a shadow bound, our approach uses
shifting followed by an explicit complementation. Finally, asmentioned earlier, our technique also helps recover a new short
proof of the Hilton–Milner theorem (Theorem 11), which we describe in the final section. We also note here that Borg [4]
used an injective argument to prove an analog of the Erdős–Ko–Rado theorem for integer partitions.

2. Shifting

We begin by reviewing the definition of the renowned shifting operation and state some of its important properties. For
set A ⊆ [n] and x ∈ [n], let A + x = A ∪ {x}, A − x = A \ {x}.

Define the (i, j)-shift σi,j : 2[n]
→ 2[n] as follows: for A ∈ 2[n], let σi,j(A) = A − i + j if i ∈ A and j ̸∈ A, and σi,j(A) = A

otherwise. Extend this definition to σi,j : 22[n]
→ 22[n]

as follows: for F ⊆ 2[n], let σi,j(F) = {σ ′

i,j(A) : A ∈ F}, where
σ ′

i,j(A) = σi,j(A) if σi,j(A) ̸∈ F , and σ ′

i,j(A) = A otherwise. The following facts are well known and easy to verify.

Fact 2. For all A ⊆ [n] and all F ⊆ 2[n] we have

1. |σi,j(A)| = |A|,
2. |σi,j(F)| = |F|, and
3. If F is intersecting then so is σi,j(F).

We say that a family F ⊆
(
[n]
r

)
is shifted if for any 1 ≤ j < i ≤ n, σi,j(F) = F . Frankl [8] proved the following useful

proposition about shifted families.

Proposition 3. Let F ⊆
(
[n]
r

)
be shifted and intersecting. Then for every F ∈ F , there exists a k = k(F ) such that |F ∩ [2k+ 1]| ≥

k + 1.

The following corollary of Proposition 3 is immediate, and will be used in the proof of Claim 5.

Corollary 4. Let F ⊆
(
[n]
r

)
be shifted and intersecting, and let r ≤ n/2. Then for every F ∈ F , there exists a k = k(F ) such that

|F ∩ [2k]| = k.

Proof. Let F ∈ F and let k = k(F ) be maximum such that |F ∩ [2k]| ≥ k. From Proposition 3, we know that such a k exists.
We claim that |F ∩ [2k]| = k. If 2k = n, then we have |F ∩ [n]| = r ≤

1
2 (2k) = k, which implies the result, so we assume

that 2k < n. Suppose that |F ∩ [2k]| ≥ k + 1. First, this implies that n ≥ 2k + 2. Next, the maximality of k implies that
|F ∩ [2k + 2]| ≤ k, a contradiction. Thus |F ∩ [2k]| = k. □

3. Proof of Theorem 1

For intersecting F ⊆
(
[n]
r

)
with 1 ≤ r ≤ n/2, we shift F until it becomes the shifted, intersecting family F ′. Now define

the function φ : F ′
→

(
[n]
r

)
1 as follows. For a set F ∈ F ′, let κ = κF be maximum such that |F ∩ [2κ]| = κ . We know that κ

exists, from Corollary 4. Now, if 1 ∈ F , let φ(F ) = F ; otherwise, let φ(F ) = F△[2κ]. We also denote φ(F) = {φ(A) : A ∈ F},
as well as write φ−1(B) = A whenever φ(A) = B, with φ−1(H) = {φ−1(B) : B ∈ H}.

Fact 2 gives |F| = |F ′
|, and Claim 5 below gives |F ′

| ≤
(n−1
r−1

)
. When r < n/2, Lemma 10 shows that F ′ is a full star, and

Lemma 9 below shows that F is a full star. □
We now prove Claim 5 and Lemmas 9 and 10 in the subsections below.

3.1. Injection

Claim 5. For r ≤ n/2, if F ⊆
(
[n]
r

)
is shifted and intersecting then the function φ defined above is injective.

Proof. Let F1, F2 ∈ F , F1 ̸= F2. If 1 ∈ F1 and 1 ∈ F2 then it is obvious that φ(F1) ̸= φ(F2).
Suppose that 1 ̸∈ F1 and 1 ̸∈ F2. If κ = κF1 = κF2 then F1 ∩ [2κ] ̸= F2 ∩ [2κ] or F1 \ [2κ] ̸= F2 \ [2κ]. Then the definition

of φ implies that φ(F1) ̸= φ(F2), as required. So, without loss of generality, we may assume that κF1 < κF2 . Using maximality
of κF1 , we have that F1 \ [2κF2 ] ̸= F2 \ [2κF2 ]. As F1 \ [2κF2 ] ⊆ φ(F1) and F2 \ [2κF2 ] ⊆ φ(F2), this implies that φ(F1) ̸= φ(F2).

Finally, suppose 1 ∈ F1 and 1 ̸∈ F2. We need to show that φ(F2) ̸= F1. Suppose instead that φ(F2) = F1. Suppose κF2 = r .
Then φ(F2) = [2r] \ F2. As φ(F2) = F1, F1 ∩ F2 = ∅, a contradiction. Thus we may assume κF2 < r . Let G2 = F2 \ [2κF2 ]

(note that |G2| > 0 as κF2 < r) and break G2 into its maximum intervals. That is, we write G2 = ∪
p−1
i=0 [ti, si+1], where

2κF2 = s0 < t0, ti ≤ si+1 for each 0 ≤ i < p, si + 1 < ti for each 0 < i < p, and tp = n. For every h ∈ [0, p − 1], we can see
that |∪

h
i=0(si, ti)| > |∪

h
i=0[ti, si+1]|, which we refer to as Property ⋆. Indeed, for each 1 ≤ j ≤ n define Xj = |[j] \ F2|− |F2 ∩[j]|.
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