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a b s t r a c t

Switching is a local transformation of a combinatorial structure that does not alter the
main parameters. Switching of binary covering codes is studied here. In particular, thewell-
known transformation of error-correcting codes by adding a parity-check bit and deleting
one coordinate is applied to covering codes. Such a transformation is termed a semiflip,
and finite products of semiflips are semiautomorphisms. It is shown that for each code
length n ≥ 3, the semiautomorphisms are exactly the bijections that preserve the set
of r-balls for each radius r . Switching of optimal codes of size at most 7 and of codes
attaining K (8, 1) = 32 is further investigated, and semiautomorphism classes of these
codes are found. The paper ends with an application of semiautomorphisms to the theory
of normality of covering codes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Transformations of combinatorial structures that do not alter the basic parameters have been studied since the early days
of combinatorics. In [12], the first author unifies much of the theory of such transformations under the concept of switching.
For binary codes, the following definition is given in [12].

Definition 1. A switch of a binary code is a transformation that concerns exactly one coordinate and keeps the studied
parameter of the code unchanged.

For binary (error-correcting) codes with a prescribed minimum distance d, all possible transformations that fulfill
Definition 1 can be obtained easily and quickly [12]. A transformation that first extends the code with a parity-check bit
and then punctures it in one coordinate can be seen as fulfilling Definition 1, by letting the extended coordinate replace the
punctured one. This transformation is called a semiflip. The technique of extending a code with a parity-check bit is well
known, especially as a means of showing that A(n + 1, d + 1) = A(n, d) for d odd, where A(n, d) denotes the maximum size
of a binary code of length n and minimum distance d.

Semiflips constitute switches also for covering codes, that is, the covering radius of the code is not altered by the
transformation, as shown in [3, Example 3.1.4], originally due to Struik [14, Lemma 3.7]. This paper is devoted to an in-depth
study of the semiflip and its application to binary covering codes in particular.

We need a formal definition of codes and related notations. Let Z denote the set of integers, and let Z2 = {0, 1} be the
group of integers modulo 2. For each positive integer n, let Zn

2 denote the set of binary words of length n. A (binary) code of
length n is a nonempty subset of Zn

2, and its elements are called codewords.
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We write 0 for the all-zero word. For each i, 1 ≤ i ≤ n, ei is the word that has 1 only in coordinate i. The value in the
ith coordinate of a word c is denoted by ci. We write c for the word obtained by complementing each coordinate of c, and
say the words c and c are complementary. For x, y ∈ Zn

2, the Hamming distance dH (x, y) between x and y is the number of
coordinates in which they differ; dH is a metric on Zn

2. For each integer r , 0 ≤ r ≤ n, the (closed) r-ball centered at x is
{y ∈ Zn

2 : dH (x, y) ≤ r}, denoted by Br (x).
A code is d-error-correcting if the d-balls centered at the codewords are pairwise disjoint. A code of length n is a covering

code of covering radius r if Zn
2 is the union of the r-balls centered at the codewords. A code is perfect if for some nonnegative

integer r it is both r-error-correcting and r-covering; that is, the r-balls centered at codewords tile Zn
2.

The paper is organized as follows. The concept of switching is considered in more detail in Section 2, where the
semiflip is formally introduced. Semiautomorphisms, the symmetries induced by semiflips, are studied in Section 3, and
in Section 4 it is shown that semiautomorphisms preserve code properties. In Section 5 the metric naturally associated with
semiautomorphisms is introduced, and a short proof is given of a theorem of Perkel and Miller on automorphism groups of
cube powers. Switching classes of small covering codes are studied in Section 6. In Section 7 a characterization of normal
covering codes is given.

2. Switching of codes

In [12], it is shown how all possible switches of a binary t-error-correcting code C (so d = 2t + 1) can be found via a
particular bipartite graph G = (V , E). Let m be the coordinate where the switch is to take place. Then V = V0 ∪ V1 with one
vertex in Vj for each codeword c ∈ C with cm = j. Moreover, there is an edge between the vertices corresponding to two
codewords c, c′

∈ C exactly when dH (c, c′) = 2t + 1 and c ′
m = cm. There is now a one-to-one correspondence between the

switches and the sets of connected components of G; a set of connected components gives the codewords whose value in
coordinatem is to be altered.

Fix the coordinate where a switch of a binary code is to be made, and let C ′ be the set of codewords that are altered
according to Definition 1. Such a switch is calledminimal if for each proper subset C ′′

⊂ C ′, an alteration of the codewords in
C ′′ (in the same coordinate) does not constitute a switch. For error-correcting codes, a minimal switch clearly corresponds
to one connected component of the graph G defined above. It is not clear if minimal switches of covering codes can be
characterized in a compact way; for error-correcting codes, one pays attention to non-codewords only indirectly (that is, in
considering distance between codewords) but this does not suffice for covering codes.

Switching of covering codes was not considered in [12] through an exhaustive characterization but through the specific
(well-founded) transformation that we now describe. Given a code C with covering radius r , we wish to make a switch
in place m that produces a code with the same covering radius. If a particular codeword is changed, it is likely that some
nearby codewords will need to be changed to keep the covering radius from increasing, and these changes will require
further changes. For this reason, we iteratively build the set H of codewords to be changed as follows: a singleton starting
set H1, containing the first word to be changed, is given, along with what we will call a propagation rule: a function
P : Zn

2 × Zn
2 → {true, false}. For each i ≥ 1, once Hi is determined, we set Hi+1 = {y ∈ C : P(x, y) for some x ∈ Hi

and y ̸∈ ∪
i
j=1Hj}. Since Zn

2 is finite, Hk = ∅ for some k, and we set H = ∪
k−1
i=1 Hi.

The propagation rule studied in [12] is

dH (x, y) ≤ 2r + 1, dH (x, y) odd, and ym = xm. (1)

When this rule is used with any starting set H1, we will call the result a standard covering switch. In [12, Theorem 1] it is
shown that this type of switch produces a code with the same covering radius as the original code.

Note that if dH (c, c′) = 1 in a covering code, then a standard covering switch of one of these codewords will propagate to
the other, which just leads to a transposition of the labeling of these two codewords. So the definition of standard switches of
covering codesmaybemodified by ignoring suchpairs of codewords. (Thismight have an impact on a larger set of codewords,
as a propagation of changes through these codewords is stopped.)

Suppose that a standard covering switch has starting set H1 = {x}. If the codeword y is also altered by the switch (that
is, y ∈ H), parity and (1) imply:

Either dH (x, y) is even and ym = xm, or dH (x, y) is odd and ym = xm. (2)

This implies that there will usually be nontrivial standard covering switches—ones where not all codewords will have
coordinatem altered.

We now turn to the semiflip, which was informally defined in the Introduction. We will show (see the last claim of
Proposition 3) that a semiflip is a switch with (2) as propagation rule, whichmeans all the changes are made at the first step.

For anynonempty set S, we let Sym(S) denote the groupof permutations of S and further abbreviateSn := Sym({1, . . . , n}).
The identity mapping on S is denoted by ιS ; we will often omit the subscript if it is clear from the context. We further define
π : Z → Z2 by π (n) = parity of n, and we use the same name for a mapping π : Zn

2 → Z2 where π (x) is the parity of the
weight of x.
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