Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

An infinite family of cubic nonnormal Cayley graphs on nonabelian simple groups

Jiyong Chen^a, Binzhou Xia^{b,*}, Jin-Xin Zhou^c

^a School of Mathematical Sciences, Peking University, Beijing, 100871, PR China

^b School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

^c Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, PR China

ARTICLE INFO

Article history: Received 24 May 2017 Received in revised form 26 January 2018 Accepted 1 February 2018 Available online 22 February 2018

Keywords: Nonnormal Cayley graphs Cubic graphs Simple groups

ABSTRACT

We construct a connected cubic nonnormal Cayley graph on A_{2^m-1} for each integer $m \ge 4$ and determine its full automorphism group. This is the first infinite family of connected cubic nonnormal Cayley graphs on nonabelian simple groups.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper all graphs considered are finite, simple and undirected. Given a group *G* and an inverse-closed subset *S* of $G \setminus \{1\}$, the *Cayley graph* Cay(*G*, *S*) on *G* with respect to *S* is the graph with vertex set *G* such that two vertices *x* and *y* are adjacent if and only if $yx^{-1} \in S$. Let \widehat{G} be the right regular representation of *G*. It is easy to see that \widehat{G} is a subgroup of Aut(Cay(*G*, *S*)). Moreover, it was shown by Godsil [5] that the normalizer of \widehat{G} in Aut(Cay(*G*, *S*)) is $\widehat{G} \rtimes Aut(G, S)$, where Aut(*G*, *S*) is the group of automorphisms of *G* fixing *S* setwise. In particular, Aut(Cay(*G*, *S*)) = $\widehat{G} \rtimes Aut(G, S)$ if and only if \widehat{G} is normal in Aut(Cay(*G*, *S*)). Viewing this, Xu in [14] introduced the concept of normal Cayley graphs: a Cayley graph Cay(*G*, *S*) is said to be *normal* if \widehat{G} is normal in Aut(Cay(*G*, *S*)). The study of normality of a Cayley graph plays an important role in the study of its automorphism group because once a Cayley graph Cay(*G*, *S*) is known to be normal, to determine its full automorphism group one only needs to determine the group Aut(*G*, *S*), which is usually much easier. For a survey paper on normality of Cayley graphs we refer the reader to [4].

The normality of cubic Cayley graphs on nonabelian simple groups has received considerable attention. It was proved in [12] that a connected cubic Cayley graph Cay(G, S) with G nonabelian simple is normal if $\widehat{G} \rtimes Aut(G, S)$ is transitive on the edge set of Cay(G, S). A graph is said to be *arc-transitive* if its automorphism group acts transitively on the set of arcs. In [15,16] it was proved that the only connected arc-transitive cubic nonnormal Cayley graphs on nonabelian simple groups are two Cayley graphs on A_{47} up to isomorphism, and their full automorphism groups are both isomorphic to A_{48} . On the other hand, examples of connected cubic nonnormal Cayley graphs on nonabelian simple groups are very rare. Since the connected arc-transitive cubic nonnormal Cayley graphs on nonabelian simple groups are only the above mentioned two graphs on A_{47} , we can concentrate on the non-arc-transitive case. In this context, one has the following theorem combining [2, Theorem 1.1] and [17, Theorem 1.2].

https://doi.org/10.1016/j.disc.2018.02.001 0012-365X/© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author. *E-mail addresses: cjy* 1988@pku.edu.cn (J. Chen), binzhoux@unimelb.edu.au (B. Xia), jxzhou@bjtu.edu.cn (J.-X. Zhou).

Theorem 1.1 ([2,17]). Let Cay(G, S) be a connected cubic nonnormal Cayley graph on a nonabelian simple group G. If Cay(G, S) is not arc-transitive, then one of the following holds:

- (a) $G = A_{2^m-1}$ with $m \ge 3$;
- (b) *G* is a simple group of Lie type of even characteristic except $PSL_2(2^e)$, $PSL_3(2^e)$, $PSU_3(2^e)$, $PSp_4(2^e)$, $E_8(2^e)$, $F_4(2^e)$, $^2F_4(2^e)'$, $G_2(2^e)$ and $Sz(2^e)$.

Until recently, connected cubic nonnormal Cayley graphs on the groups listed in Theorem 1.1 were only found for A_{15} and A_{31} [9]. In 2008, Feng, Lu and Xu asked the following question in their survey paper [4] on normality of Cayley graphs.

Question 1.2 ([4, Problem 5.9]). Are there infinitely many connected nonnormal Cayley graphs of valency 3 or 4 on nonabelian simple groups?

Question 1.2 in the valency 4 case has been answered by Wang and Feng [13] in the affirmative. In this paper, we answer the question in the remaining case. Our main result is Theorem 1.3, which gives a positive answer to Question 1.2.

Theorem 1.3. For each integer $m \ge 4$, there exists a graph Γ_m satisfying:

- (a) Γ_m is a connected cubic nonnormal Cayley graph on A_{2^m-1} ;
- (b) $\Gamma_m \cong \text{Cay}(A_{2^m-1}, S)$ for some set S of three involutions in A_{2^m-1} such that $\text{Aut}(A_{2^m-1}, S) = 1$;
- (c) Aut(Γ_m) \cong A₂^{*m*}.

We call a Cayley graph Cay(G, S) a graphical regular representation (GRR for short) of G if $Aut(Cay(G, S)) = \widehat{G}$. Note that a GRR is necessarily a normal Cayley graph, and a necessary condition for Cay(G, S) to be a GRR is that Aut(G, S) = 1. In many circumstances it is shown that this condition is also sufficient, see for example [2,5,6]. More generally, a problem is posed in [2] to determine the groups G such that a Cayley graph Cay(G, S) on G is a GRR of G if and only if Aut(G, S) = 1. We remark that our graph Γ_m in Theorem 1.3 as a Cayley graph on $G := A_{2^m-1}$ is not only nonnormal (and hence not a GRR) but also satisfies the condition Aut(G, S) = 1. It is also worth remarking that, although the graph Γ_m is not arc-transitive, it has local action C_2 so that it corresponds to a tetravalent arc-transitive graph in the standard way described in [11, Section 4.1].

The paper is organized as follows. We shall first give the construction of Γ_m for Theorem 1.3 in Section 2. Then the entirety of Section 3 will be devoted to proving the connectivity of Γ_m . Finally in Section 4 we prove the remaining properties of Γ_m described in Theorem 1.3, thus completing the proof of the theorem.

2. Construction of Γ_m

We first introduce some notation that is fixed throughout this paper. Let $m \ge 4$ be an integer,

$$H = \langle a, b \mid a^4 = b^2 = (ab)^2 = 1 \rangle \times \langle c_1 \rangle \times \langle c_2 \rangle \times \cdots \times \langle c_{m-3} \rangle,$$

where $c_1, c_2, \ldots, c_{m-3}$ are involutions,

$$K = \langle a^2, b, c_1, c_2, \dots, c_{m-3} \rangle = \langle a^2 \rangle \times \langle b \rangle \times \langle c_1 \rangle \times \langle c_2 \rangle \times \dots \times \langle c_{m-3} \rangle$$

and $h = a \prod_{i=0}^{\lceil (m-5)/2 \rceil} c_{2i+1}$. Clearly, H is the direct product of a dihedral group D_8 of order 8 and an elementary abelian 2-group of rank m - 3, so that $|H| = 2^m$. For the sake of convenience, put $c_{-1} = c_0 = 1$. Define $x \in Aut(H)$ by letting

$$a^{x} = a^{-1}$$
, $b^{x} = ab$, $c^{x}_{2i+1} = c_{2i+1}$ and $c^{x}_{2i+2} = a^{2}c_{2i+1}c_{2i+2}$

for $0 \le i \le \lfloor (m-5)/2 \rfloor$ and letting $c_{m-3}^{\chi} = a^2 c_{m-3}$ in addition if *m* is even. Define $\tau \in Aut(K)$ by letting

$$(a^2)^{\tau} = b$$
, $b^{\tau} = a^2$, $c_{2i+1}^{\tau} = c_{2i-1}c_{2i}c_{2i+2}$ and $c_{2i+2}^{\tau} = c_{2i-1}c_{2i}c_{2i+1}$

for $0 \le i \le \lfloor (m-5)/2 \rfloor$ and letting $c_{m-3}^{\tau} = c_{m-3}$ in addition if *m* is even. Note that *x* and τ are indeed automorphisms of *H* and *K* because the images of generators under *x* and τ satisfy the defining relation for *H* and *K*, respectively. Denote the right regular representation of *H* by *R*. Let *y* be the permutation of *H* such that $g^y = g^{\tau}$ and

$$(hg)^{y} = \begin{cases} hg^{\tau} & \text{if } m \text{ is odd,} \\ hg^{\tau}c_{m-3} & \text{if } m \text{ is even} \end{cases}$$

for $g \in K$. Let

$$z = \begin{cases} R(h)yR(h^{-1}) & \text{if } m \text{ is odd,} \\ R(h)yR(h^{-1}c_{m-3}) & \text{if } m \text{ is even.} \end{cases}$$

We will see that the three permutations x, y and z of H are all involutions in Alt(H).

Lemma 2.1. x, y and z are all involutions.

Download English Version:

https://daneshyari.com/en/article/8903001

Download Persian Version:

https://daneshyari.com/article/8903001

Daneshyari.com