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a b s t r a c t

We construct a connected cubic nonnormal Cayley graph on A2m−1 for each integer m ⩾ 4
and determine its full automorphism group. This is the first infinite family of connected
cubic nonnormal Cayley graphs on nonabelian simple groups.
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1. Introduction

In this paper all graphs considered are finite, simple and undirected. Given a group G and an inverse-closed subset S
of G \ {1}, the Cayley graph Cay(G, S) on G with respect to S is the graph with vertex set G such that two vertices x and y
are adjacent if and only if yx−1

∈ S. Let Ĝ be the right regular representation of G. It is easy to see that Ĝ is a subgroup
of Aut(Cay(G, S)). Moreover, it was shown by Godsil [5] that the normalizer of Ĝ in Aut(Cay(G, S)) is Ĝ ⋊ Aut(G, S), where
Aut(G, S) is the group of automorphisms of G fixing S setwise. In particular, Aut(Cay(G, S)) = Ĝ ⋊ Aut(G, S) if and only
if Ĝ is normal in Aut(Cay(G, S)). Viewing this, Xu in [14] introduced the concept of normal Cayley graphs: a Cayley graph
Cay(G, S) is said to be normal if Ĝ is normal in Aut(Cay(G, S)). The study of normality of a Cayley graph plays an important
role in the study of its automorphism group because once a Cayley graph Cay(G, S) is known to be normal, to determine its
full automorphism group one only needs to determine the group Aut(G, S), which is usually much easier. For a survey paper
on normality of Cayley graphs we refer the reader to [4].

The normality of cubic Cayley graphs on nonabelian simple groups has received considerable attention. It was proved
in [12] that a connected cubic Cayley graph Cay(G, S) with G nonabelian simple is normal if Ĝ ⋊ Aut(G, S) is transitive on
the edge set of Cay(G, S). A graph is said to be arc-transitive if its automorphism group acts transitively on the set of arcs.
In [15,16] it was proved that the only connected arc-transitive cubic nonnormal Cayley graphs on nonabelian simple groups
are twoCayley graphs onA47 up to isomorphism, and their full automorphismgroups are both isomorphic toA48. On the other
hand, examples of connected cubic nonnormal Cayley graphs on nonabelian simple groups are very rare. Since the connected
arc-transitive cubic nonnormal Cayley graphs on nonabelian simple groups are only the abovementioned two graphs on A47,
we can concentrate on the non-arc-transitive case. In this context, one has the following theorem combining [2, Theorem1.1]
and [17, Theorem 1.2].

* Corresponding author.
E-mail addresses: cjy1988@pku.edu.cn (J. Chen), binzhoux@unimelb.edu.au (B. Xia), jxzhou@bjtu.edu.cn (J.-X. Zhou).

https://doi.org/10.1016/j.disc.2018.02.001
0012-365X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2018.02.001
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2018.02.001&domain=pdf
mailto:cjy1988@pku.edu.cn
mailto:binzhoux@unimelb.edu.au
mailto:jxzhou@bjtu.edu.cn
https://doi.org/10.1016/j.disc.2018.02.001


J. Chen et al. / Discrete Mathematics 341 (2018) 1282–1293 1283

Theorem 1.1 ([2,17]). Let Cay(G, S) be a connected cubic nonnormal Cayley graph on a nonabelian simple group G. If Cay(G, S)
is not arc-transitive, then one of the following holds:

(a) G = A2m−1 with m ⩾ 3;
(b) G is a simple group of Lie type of even characteristic except PSL2(2e), PSL3(2e), PSU3(2e), PSp4(2e), E8(2e), F4(2e), 2F4(2e)′,

G2(2e) and Sz(2e).

Until recently, connected cubic nonnormal Cayley graphs on the groups listed in Theorem 1.1 were only found for A15
and A31 [9]. In 2008, Feng, Lu and Xu asked the following question in their survey paper [4] on normality of Cayley graphs.

Question 1.2 ([4, Problem 5.9]). Are there infinitely many connected nonnormal Cayley graphs of valency 3 or 4 on nonabelian
simple groups?

Question 1.2 in the valency 4 case has been answered byWang and Feng [13] in the affirmative. In this paper, we answer
the question in the remaining case. Our main result is Theorem 1.3, which gives a positive answer to Question 1.2.

Theorem 1.3. For each integer m ⩾ 4, there exists a graph Γm satisfying:

(a) Γm is a connected cubic nonnormal Cayley graph on A2m−1;
(b) Γm ∼= Cay(A2m−1, S) for some set S of three involutions in A2m−1 such that Aut(A2m−1, S) = 1;
(c) Aut(Γm) ∼= A2m .

We call a Cayley graph Cay(G, S) a graphical regular representation (GRR for short) of G if Aut(Cay(G, S)) = Ĝ. Note that a
GRR is necessarily a normal Cayley graph, and a necessary condition for Cay(G, S) to be a GRR is that Aut(G, S) = 1. In many
circumstances it is shown that this condition is also sufficient, see for example [2,5,6]. More generally, a problem is posed
in [2] to determine the groups G such that a Cayley graph Cay(G, S) on G is a GRR of G if and only if Aut(G, S) = 1. We remark
that our graph Γm in Theorem 1.3 as a Cayley graph on G := A2m−1 is not only nonnormal (and hence not a GRR) but also
satisfies the condition Aut(G, S) = 1. It is also worth remarking that, although the graph Γm is not arc-transitive, it has local
action C2 so that it corresponds to a tetravalent arc-transitive graph in the standard way described in [11, Section 4.1].

The paper is organized as follows.We shall first give the construction ofΓm for Theorem 1.3 in Section 2. Then the entirety
of Section 3 will be devoted to proving the connectivity of Γm. Finally in Section 4 we prove the remaining properties of Γm
described in Theorem 1.3, thus completing the proof of the theorem.

2. Construction of Γm

We first introduce some notation that is fixed throughout this paper. Letm ⩾ 4 be an integer,

H = ⟨a, b | a4 = b2 = (ab)2 = 1⟩ × ⟨c1⟩ × ⟨c2⟩ × · · · × ⟨cm−3⟩,

where c1, c2, . . . , cm−3 are involutions,

K = ⟨a2, b, c1, c2, . . . , cm−3⟩ = ⟨a2⟩ × ⟨b⟩ × ⟨c1⟩ × ⟨c2⟩ × · · · × ⟨cm−3⟩

and h = a
∏⌈(m−5)/2⌉

i=0 c2i+1. Clearly,H is the direct product of a dihedral groupD8 of order 8 and an elementary abelian 2-group
of rankm − 3, so that |H| = 2m. For the sake of convenience, put c−1 = c0 = 1. Define x ∈ Aut(H) by letting

ax = a−1, bx = ab, cx2i+1 = c2i+1 and cx2i+2 = a2c2i+1c2i+2

for 0 ⩽ i ⩽ ⌊(m − 5)/2⌋ and letting cxm−3 = a2cm−3 in addition ifm is even. Define τ ∈ Aut(K ) by letting

(a2)τ = b, bτ = a2, cτ2i+1 = c2i−1c2ic2i+2 and cτ2i+2 = c2i−1c2ic2i+1

for 0 ⩽ i ⩽ ⌊(m − 5)/2⌋ and letting cτm−3 = cm−3 in addition if m is even. Note that x and τ are indeed automorphisms of
H and K because the images of generators under x and τ satisfy the defining relation for H and K , respectively. Denote the
right regular representation of H by R. Let y be the permutation of H such that gy

= gτ and

(hg)y =

{
hgτ ifm is odd,
hgτ cm−3 ifm is even

for g ∈ K . Let

z =

{
R(h)yR(h−1) ifm is odd,
R(h)yR(h−1cm−3) ifm is even.

We will see that the three permutations x, y and z of H are all involutions in Alt(H).

Lemma 2.1. x, y and z are all involutions.
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