Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Local and union boxicity

Thom[a](#page-0-0)s Bläsius ^a, Peter Stumpf ^{[b](#page-0-1)}, Torsten Ueckerdt ^{[c,](#page-0-2)[*](#page-0-3)}

^a *Research Group Algorithm Engineering, Hasso Plattner Institute, Potsdam, Germany*

b *Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany*

c *Institute of Algebra and Geometry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany*

ARTICLE INFO

Article history: Received 30 September 2016 Received in revised form 31 January 2018 Accepted 1 February 2018 Available online 24 February 2018

Keywords: Boxicity Intersection graph Interval graph Covering number

a b s t r a c t

The boxicity box(*H*) of a graph *H* is the smallest integer *d* such that *H* is the intersection of *d* interval graphs, or equivalently, that *H* is the intersection graph of axis-aligned boxes in R *d* . These intersection representations can be interpreted as covering representations of the complement *H ^c* of *H* with co-interval graphs, that is, complements of interval graphs. We follow the recent framework of global, local and folded covering numbers (Knauer and Ueckerdt, 2016) to define two new parameters: the local boxicity box_{ℓ}(*H*) and the union boxicity box(*H*) of *H*. The union boxicity of *H* is the smallest *d* such that *H c* can be covered with *d* vertex–disjoint unions of co-interval graphs, while the local boxicity of *H* is the smallest *d* such that H^c can be covered with co-interval graphs, at most *d* at every vertex.

We show that for every graph *H* we have $box_{\ell}(H) \leq \overline{box}(H) \leq box(H)$ and that each of these inequalities can be arbitrarily far apart. Moreover, we show that local and union boxicity are also characterized by intersection representations of appropriate axis-aligned boxes in \mathbb{R}^d . We demonstrate with a few striking examples, that in a sense, the local boxicity is a better indication for the complexity of a graph, than the classical boxicity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this article are finite, undirected, simple (have neither loops nor multiple edges), and have at least one edge. An *interval graph* is an intersection graph of intervals on the real line.^{[1](#page-0-4)} Such a set {*I*(*v*) \subseteq $\mathbb R$ | *v* \in *V*(*H*)} of intervals with $vw\in E(H)\Leftrightarrow I(v)\cap I(w)\neq\emptyset$ is called an *interval representation of H*. A box in \mathbb{R}^d , also called a *d-dimensional box*, is the Cartesian product of *d* intervals. The *boxicity* of a graph *H*, denoted by box(*H*), is the least integer *d* such that *H* is the intersection graph of *d*-dimensional boxes, and a corresponding set {*B*(v) ⊆ R *d* | v ∈ *V*(*H*)} is a *box representation of H*. The boxicity was introduced by Roberts [\[17\]](#page--1-0) in 1969 and has many applications in as diverse areas as ecology and operations research [\[4\]](#page--1-1).

As two *d*-dimensional boxes intersect if and only if each of the *d* corresponding pairs of intervals intersect, we have the following more graph theoretic interpretation of the boxicity of a graph; also see [Fig. 1\(](#page-1-0)a).

Theorem 1 (*Roberts [\[17\]](#page--1-0)*). For a graph H we have box(H) < d if and only if $H = G_1 \cap \cdots \cap G_d$ for some interval graphs *G*1, . . . , *Gd.*

* Corresponding author.

<https://doi.org/10.1016/j.disc.2018.02.003> 0012-365X/© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: Thomas.Blaesius@hpi.de (T. Bläsius), torsten.ueckerdt@kit.edu (T. Ueckerdt).

¹ Throughout, we shall just say ''intervals'' and drop the suffix ''on the real line''. Intervals may be open, half-open, or closed (even though restricting to one kind does not affect the notion of an interval graph) and bounded or unbounded.

Fig. 1. (a) The 4-cycle as the intersection of two interval graphs. (b) Example graph *H*. (c) An injective covering of *H* that is 3-global and 2-local. (d) A (non-injective) 1-global 2-local covering of *H*.

I.e., the boxicity of a graph *H* is the least integer *d* such that *H* is the intersection of *d* interval graphs. For a graph $H = (V, E)$ we denote its complement by $H^c = (V, {V \choose 2} - E)$. Then by De Morgan's law we have

$$
H = G_1 \cap \dots \cap G_d \iff H^c = G_1^c \cup \dots \cup G_d^c,
$$
\n
$$
(1)
$$

i.e., box(*H*) is the least integer *d* such that the complement *H^c* of *H* is the union of *d* co-interval graphs G_1^c, \ldots, G_d^c , where a co -interval graph is the complement of an interval graph. 2 2 In other words, box(H) $\leq d$ if H c can be covered with d co-interval graphs. Strictly speaking, we have to be a little more precise here. In order to use De Morgan's law, we should guarantee that G_1, \ldots, G_d in [\(1\)](#page-1-2) all have the same vertex set. To this end, if *G* is a subgraph of *H*, let $G = (V(H), E(G))$ be the graph obtained from *G* by adding all vertices in $V(H) - V(G)$ as isolated vertices. (We use \bar{G} to denote a graph obtained from $G \subseteq H$ by adding vertices of *H* not in *G* either as isolated or universal vertices.) Clearly we have

$$
H^c = G_1^c \cup \cdots \cup G_d^c \quad \Rightarrow \quad H^c = \bar{G}_1^c \cup \cdots \cup \bar{G}_d^c \quad \Rightarrow \quad H = \bar{G}_1 \cap \cdots \cap \bar{G}_d
$$

for any graph *H* and any set of subgraphs G_1, \ldots, G_d of *H*. Now whenever *G* is a co-interval graph, then so is \bar{G} , implying that box(*H*) is the least integer *d* such that *H c* can be covered with *d* co-interval graphs.

Graph covering parameters

In the general graph covering problem, one is given an input graph H , a so-called covering class G and a notion of how to cover *H* with one or more graphs from G. The most classic notion of covering, which also corresponds to the boxicity as discussed above, is that H shall be the union of $G_1,\ldots,G_t\in\mathcal{G}$, i.e., $V(H)=\bigcup_{i\in[t]}V(G_i)$ and $E(H)=\bigcup_{i\in[t]}E(G_i)$. (Here and throughout the paper, for a positive integer t we denote $[t] = \{1,\ldots,t\}$.) The global covering number, denoted by $c_g^{\cal G}(H)$, is then defined to be the minimum *t* for which such a cover exists. Many important graph parameters can be interpreted as a global covering number, e.g., the arboricity [\[15\]](#page--1-2) when G is the class of forests, the track number [\[9\]](#page--1-3) when G is the class of interval graphs (Note that this is the smallest number of interval graphs covering a graph *H*, which is very different from the track-number of *H* as defined in [\[5\]](#page--1-4).), and the thickness [\[1](#page--1-5)[,14\]](#page--1-6) when G is the class of planar graphs, just to name a few.

Most recently, Knauer and Ueckerdt [\[10\]](#page--1-7) suggested the following unifying framework for three kinds of covering numbers, differing in the underlying notion of covering. A *graph homomorphism* is a function $\varphi : V(G) \to V(H)$ with the property that *if* $uv \in E(G)$ then $\varphi(u)\varphi(v) \in E(H)$, i.e., φ maps vertices of *G* (not necessarily injectively) to vertices of *H* such that edges are mapped to edges. For abbreviation we shall simply write φ : *G* \to *H* instead of φ : *V*(*G*) \to *V*(*H*). Whenever *G* is a subgraph of *G*, $\varphi(G')$ denotes the (not necessarily induced) subgraph *H'* of *H* with $V(H') = \{\varphi(v) \mid v \in V(G')\}$ and $E(H')=\{\varphi(u)\varphi(v)\mid uv\in E(G')\}$. A copy of a graph *G'* in *H* is a (not necessarily induced) subgraph *H'* of *H* that is isomorphic to *G* ′ .

For an input graph *H*, a covering class G and a positive integer *t*, a *t*-global G -cover of *H* is an edge-surjective homomorphism φ : $G_1 \cup \cdots \cup G_t \to H$ such that $G_i \in \mathcal{G}$ for each $i \in [t]$. Here \cup denotes the vertex-disjoint union of graphs. We say that φ is *injective* if its restriction to G_i is injective for each $i\in [t]$. A ${\cal G}$ -cover is called *s-local* if $|\varphi^{-1}(v)|\leq s$ for every $v \in V(H)$.

Hence, if φ is a \mathcal{G} -cover of *H*, then

 φ is *t*-global if it uses only t graphs 3 3 from the covering class $\mathcal{G},$

 φ is injective if $\varphi(G_i)$ is a copy of G_i in H for each $i \in [t]$,

 φ is *s*-local if for each $v \in V(H)$ at most *s* vertices are mapped onto *v*.

² Precisely, *G* is a co-interval graph if there is a set {*I*(*v*) $\subseteq \mathbb{R}$ | *v* $\in V(G)$ } of intervals with *vw* $\in E(G) \Leftrightarrow I(v) \cap I(w) = \emptyset$. Equivalently, these are the comparability graphs of interval orders.

³ More precisely, φ uses a multiset of size *t* consisting of graphs from *g*, as the same graph may be used more than once.

Download English Version:

<https://daneshyari.com/en/article/8903007>

Download Persian Version:

<https://daneshyari.com/article/8903007>

[Daneshyari.com](https://daneshyari.com)