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a b s t r a c t

In this paper, we prove some relaxations of Hedetniemi’s conjecture in terms of altermatic
number and strong altermatic number of graphs, two combinatorial parameters introduced
by the present authors Alishahi and Hajiabolhassan (2015) providing two sharp lower
bounds for the chromatic number of graphs. In terms of these parameters, we also intro-
duce some sharp lower bounds for the chromatic number of the categorical product of two
graphs. Using these lower bounds, we present some new families of graphs supporting
Hedetniemi’s conjecture.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Preliminary notions

Throughout the paper, for two integers n and k with n ≥ k, the two symbols [n] and
(
[n]
k

)
, respectively, stand for the

set {1, . . . , n} and the set of all k-subsets of [n]. Also, unless otherwise stated, we consider only simple graphs (graphs
without loops or parallel edges). For two given graphs G and H , their categorical product G × H is a graph whose vertex
set is V (G) × V (H) and any two vertices (u, v) and (u′, v′) are adjacent whenever u is adjacent to u′ and v is adjacent to
v′. Hedetniemi’s conjecture [10] is a very challenging and long-standing conjecture in graph theory which asserts that the
chromatic number of the categorical product of two graphs is the minimum of their chromatic numbers. The chromatic
number of the categorical product of graphs is studied extensively in the literature. For instance, one can refer to two
extensive surveys by Tardif [25] and Zhu [26]. Hedetniemi’s conjecture is open in general, although it has been verified
for some families of graphs, especially those graphs which satisfy some topological conditions, see [11,16,22,24–26].

A hypergraph H is an ordered pair (V (H), E(H)) where V (H) is a finite set and E(H) is a family of nonempty subsets
of V (H). The elements of V (H) and E(H) are, respectively, called vertices and edges of H. All hypergraphs considered in the
paper have nomultiple edges and E(H) is thus a usual set. For a hypergraphH, the general Kneser graph KG(H) is a graphwith
vertex set E(H) such that two vertices are adjacent if their corresponding edges are vertex-disjoint. The coloring properties
of general Kneser graphs were studied in many research articles, for instance [2,6,8,14,15,17,20]. It is simple to check that
for any graph G, there are (infinitely many) hypergraphs H for which G and KG(H) are isomorphic: for a graph G, let V (H)
be the union of V (G) with the set of pairs of nonadjacent vertices of G, that is V (H) = V (G) ∪ E(Ḡ), and for a vertex u of
G, the edge eu of H is the set consisting of the vertex u and the pairs containing u. Such a hypergraph H is called a Kneser
representation of G. The Kneser graph KG(n, k) can be defined in this way if we set H = ([n],

(
[n]
k

)
), which justifies the name

of Kneser representation. A set I ⊆ V (H) is called independent if it contains no edge of H.
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Let V be a finite set. Define

LV =
{
σ (1) < · · · < σ (n) : σ : [n] −→ V is a bijection

}
to be the set of all linear orderings of V = {v1, v2, . . . , vn}. By abuse of language, when we write σ = vi1 < · · · < vin , we
simultaneously consider σ as the linear ordering vi1 < · · · < vin and the bijective map σ : [n] −→ V where σ (j) = vij
for each j. Throughout the paper, we use this without any further mention. Let σ : [n] −→ V be a linear ordering of V . A
sequence x1 . . . , xq of vertices ofH is said to be in the order prescribed by σ if for each l ∈ [q], xl = σ (jl), where j1 < · · · < jq.
For two orderings σ1 = v1 < · · · < vm1 ∈ LV and σ2 = v′1 < · · · < v′m2

∈ LV ′ , by the concatenation of σ2 after σ1, denoted
by σ1 ∥ σ2, we refer to the ordering v1 < · · · < vm1 < v′1 < · · · < v′m2

∈ LV⊎V ′ .
Let H = (V , E) be a Kneser representation of G. The present authors [2] introduced the alternation number and strong

alternation number of H and gave two lower bounds for the chromatic number of G in terms of these two parameters.
Given a linear ordering σ of V and a pair {I1, I2} of independent sets of H, the value of alt(H, σ , {I1, I2}) is the maximum
length of a sequence (in the order prescribed by σ ) of vertices of H alternating between membership in I1 and I2 (starting
in any of the two sets). Similarly, for an independent set I , salt(H, σ , I) is the maximum length of a sequence (in the order
prescribed by σ ) of vertices of H alternating between membership and nonmembership in I (starting with membership or
nonmembership). The value of alt(H, σ ) is the maximum of the values of alt(H, σ , {I1, I2}), and alt(H) is the minimum of
the values of alt(H, σ ), where the maximum and minimum are, respectively, taken over all possible pairs {I1, I2} and all
linear orderings σ ∈ LV . Similarly, salt(H, σ ) is the maximum of the values of salt(H, σ , I), and salt(H) is the minimum
of the values of salt(H, σ ), where the maximum and minimum are, respectively, taken over all independent sets I and all
linear orderings σ ∈ LV . The two quantities alt(H) and salt(H) are, respectively, called the alternation number and the strong
alternation number of H. In other words, alt(H, σ ) (resp. salt(H, σ )) is the largest integer k for which there is a subsequence
(sub-ordering) x1 < x2 . . . < xk of σ = vi1 < · · · < vin such that each (resp. at least one) of {xj : j is odd} and {xj : j is even}
is an independent set ofH. It is clear that alt(H, σ ) ≤ salt(H, σ ) and equality can hold. However, we can build a hypergraph
H such that the difference between alt(H, σ ) and salt(H, σ ) is arbitrary large. To this end, let Hn be a hypergraph with
vertex set V (H) = {v1, . . . , vn} ∪ {u1, . . . , un} and the edge set E(Hn) =

{
{vi} : i = 1, . . . , n

}
. For σ = v1 < u1 <

· · · < vn < un, one can check that alt(H, σ ) = n while for I = {u1, . . . , un}, we have salt(H, σ , I) = 2n which implies
salt(H, σ ) = 2n. Eventually, the altermatic number and the strong altermatic number of a graph G are, respectively, defined as
follows:

ζ (G) = max
H

{
|V (H)| − alt(H) : KG(H)←→ G

}
and

ζs(G) = max
H

{
|V (H)| + 1− salt(H) : KG(H)←→ G

}
,

where KG(H) ←→ G means that KG(H) and G are homomorphically equivalent in the sense that there are some
homomorphism from KG(H) to G and some homomorphism from G to KG(H). For a graph G, a hypergraph G is called
ζ -optimum (resp. ζs-optimum) Kneser representation of G if KG(G) ←→ G and ζ (G) = |V (G)| − alt(G) (resp. ζs(G) =
1+|V (G)|−salt(G)). Such a hypergraph always exists since, in view of Theorem A, we havemax{ζ (G), ζs(G)} <∞. Note that
the aforementioned inequality alt(H, σ ) ≤ salt(H, σ ) implies ζ (G) ≥ ζs(G) − 1. Throughout the paper, we will frequently
use |V (H)| − alt(H) and |V (H)| − salt(H)+ 1, for simplicity of notation, we thus set alt(H) and salt(H) to refer to these two
quantities, respectively.

The chromatic number of Kneser graphs KG(n, k) was computed by Lovász [17] solving a long standing conjecture by
Kneser [12]. Lovász’s proof makes use of algebraic topology giving birth to an area of combinatorics known as topological
combinatorics. Later, Matoušek [19] found a purely combinatorial proof of Kneser’s conjecture. However, his proof still has
a topological flavor. Lovász’s result was generalized to the general Kneser hypergraphs KG(H) by Dol’nikov [8]. Alishahi
and Hajiabolhassan [2] used Tucker’s lemma, a combinatorial counterpart of the Borsuk–Ulam theorem, and proved that
both altermatic number and strong altermatic number provide sharp lower bounds for the chromatic number of graphs, see
Theorem A. This result improves Dol’nikov’s result as well as Lovász’s result. Additionally, using this result, they were able to
compute the chromatic number of some families of graphs, see [2–5]. It is also worth mentioning that Meunier [21] proved
that for any fixed linear ordering σ , it is an NP-hard problem to compute alt(H, σ ) for a given hypergraph H.

Theorem A ([2]). For any graph G, we have

χ (G) ≥ max {ζ (G), ζs(G)} .

Let n and k be two positive integers such that n ≥ 2k. Note that if we set H = ([n],
(
[n]
k

)
), then it is simple to see that

alt(H) = salt(H) = n− 2k+ 2 which implies that χ (KG(n, k)) ≥ ζ (KG(n, k)) ≥ n− 2k+ 2 and χ (KG(n, k)) ≥ ζs(KG(n, k)) ≥
n− 2k+ 2. Indeed, Kneser’s conjecture states that χ (KG(n, k)) ≥ n− 2k+ 2. Consequently, Theorem A immediately implies
Lovász’s result.
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