Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Intersecting families, cross-intersecting families, and a proof of a conjecture of Feghali, Johnson and Thomas

Peter Borg

Note

Department of Mathematics, Faculty of Science, University of Malta, Malta

ARTICLE INFO

Article history: Received 12 April 2017 Received in revised form 31 January 2018 Accepted 1 February 2018 Available online 2 March 2018

Keywords: Intersecting family Cross-intersecting families Erdős–Ko–Rado theorem Feghali–Johnson–Thomas conjecture

ABSTRACT

A family \mathcal{A} of sets is said to be *intersecting* if every two sets in \mathcal{A} intersect. Two families \mathcal{A} and \mathcal{B} are said to be *cross-intersecting* if each set in \mathcal{A} intersects each set in \mathcal{B} . For a positive integer n, let $[n] = \{1, \ldots, n\}$ and $\mathcal{S}_n = \{A \subseteq [n] : 1 \in A\}$. We extend the Erdős–Ko–Rado Theorem by showing that if \mathcal{A} and \mathcal{B} are non-empty cross-intersecting families of subsets of [n], \mathcal{A} is intersecting, and $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_n$ are non-negative real numbers such that $a_i + b_i \ge a_{n-i} + b_{n-i}$ and $a_{n-i} \ge b_i$ for each $i \le n/2$, then

$$\sum_{A\in\mathcal{A}}a_{|A|} + \sum_{B\in\mathcal{B}}b_{|B|} \leq \sum_{A\in\mathcal{S}_n}a_{|A|} + \sum_{B\in\mathcal{S}_n}b_{|B|}.$$

For a graph *G* and an integer $r \ge 1$, let $\mathcal{I}_G^{(r)}$ denote the family of *r*-element independent sets of *G*. Inspired by a problem of Holroyd and Talbot, Feghali, Johnson and Thomas conjectured that if r < n and *G* is a *depth-two claw* with *n* leaves, then *G* has a vertex *v* such that $\{A \in \mathcal{I}_G^{(r)} : v \in A\}$ is a largest intersecting subfamily of $\mathcal{I}_G^{(r)}$. They proved this for $r \le \frac{n+1}{2}$. We use the result above to prove the full conjecture.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote non-negative integers or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote *families* (that is, sets whose members are sets themselves). It is to be assumed that arbitrary sets and families are finite. We call a set A an r-element set if its size |A| is r, that is, if it contains exactly r elements (also called members).

The set $\{1, 2, ...\}$ of positive integers is denoted by \mathbb{N} . For any integer $n \ge 0$, the set $\{i \in \mathbb{N} : i \le n\}$ is denoted by [n]. Note that [0] is the empty set \emptyset . For a set X, the *power set of* X (that is, $\{A : A \subseteq X\}$) is denoted by 2^X . The family of r-element subsets of X is denoted by $\binom{X}{r}$. The family of r-element sets in a family \mathcal{F} is denoted by $\mathcal{F}^{(r)}$. If $\mathcal{F} \subseteq 2^X$ and $x \in X$, then the family $\{F \in \mathcal{F} : x \in F\}$ is denoted by $\mathcal{F}(x)$ and called a *star of* \mathcal{F} .

We say that a set *A* intersects a set *B* if *A* and *B* have at least one common element (that is, $A \cap B \neq \emptyset$). A family \mathcal{A} is said to be intersecting if for every $A, B \in \mathcal{A}, A$ and *B* intersect. The stars of a family \mathcal{F} (with $\bigcup_{F \in \mathcal{F}} F \neq \emptyset$) are the simplest intersecting subfamilies of \mathcal{F} . We say that \mathcal{F} has the star property if at least one of the largest intersecting subfamilies of \mathcal{F} is a star of \mathcal{F} .

One of the most popular endeavors in extremal set theory is that of determining the size of a largest intersecting subfamily of a given family \mathcal{F} . This started in [18], which features the following classical result, known as the Erdős–Ko–Rado (EKR) Theorem.

Theorem 1.1 (*EKR Theorem* [18]). If $r \le n/2$ and \mathcal{A} is an intersecting subfamily of $\binom{[n]}{r}$, then $|\mathcal{A}| \le \binom{n-1}{r-1}$.

E-mail address: peter.borg@um.edu.mt.

https://doi.org/10.1016/j.disc.2018.02.004 0012-365X/© 2018 Elsevier B.V. All rights reserved.

This means that $\binom{[n]}{r}$ has the star property. There are various proofs of the EKR Theorem (see [14,29,31]), two of which are particularly short and beautiful: Katona's [31], which introduced the elegant cycle method, and Daykin's [14], using the fundamental Kruskal-Katona Theorem [30,32]. The EKR Theorem gave rise to some of the highlights in extremal set theory [1,20,29,34] and inspired many results that establish how large a system of sets can be under certain intersection conditions; see [6,15,21,22,23,26,27].

If A and B are families such that each set in A intersects each set in B, then A and B are said to be cross-intersecting.

For intersecting subfamilies of a given family \mathcal{F} , the natural question to ask is how large they can be. A natural variant of this intersection problem is the problem of maximizing the sum or the product of sizes of cross-intersecting subfamilies (not necessarily distinct or non-empty) of \mathcal{F} . This has recently attracted much attention. The relation between the original intersection problem, the sum problem and the product problem is studied in [7]. Solutions have been obtained for various families; most of the known results are referenced in [8,9], which treat the product problem for families of subsets of [n] of size at most r.

Here we consider the sum problem for the case where at least one of two cross-intersecting families A and B of subsets of [n] is an intersecting family. We actually consider a more general setting of weighted sets, where each set of size i is assigned two non-negative integers a_i and b_i , and the objective is to maximize $\sum_{A \in \mathcal{A}} a_{|A|} + \sum_{B \in \mathcal{B}} b_{|B|}$. Note that $\sum_{A \in \mathcal{A}} a_{|A|} = |\mathcal{A}|$ if $a_0 = a_1 = \cdots = a_n = 1$. Let S_n denote the star $\{A \subseteq [n] : 1 \in A\}$ of $2^{[n]}$. In Section 2, we prove the following extension of the EKR Theorem.

Theorem 1.2. If A and B are non-empty cross-intersecting families of subsets of [n], A is intersecting, and $a_0, a_1, \ldots, a_n, b_0$, b_1, \ldots, b_n are non-negative real numbers such that $a_i + b_i \ge a_{n-i} + b_{n-i}$ and $a_{n-i} \ge b_i$ for each $i \le n/2$, then

$$\sum_{A\in\mathcal{A}}a_{|A|}+\sum_{B\in\mathcal{B}}b_{|B|}\leq \sum_{A\in\mathcal{S}_n}a_{|A|}+\sum_{B\in\mathcal{S}_n}b_{|B|}.$$

The EKR Theorem is obtained by taking $r \le n/2$, $\mathcal{B} = \mathcal{A} \subseteq {\binom{[n]}{r}}$, and $b_i = 0 = a_i - 1$ for each $i \in \{0\} \cup [n]$. We use Theorem 1.2 to prove a conjecture of Feghali, Johnson and Thomas [19, Conjecture 2.1]. Before stating the conjecture, we need some further definitions and notation.

A graph G is a pair (X, \mathcal{Y}) , where X is a set, called the vertex set of G, and \mathcal{Y} is a subset of $\binom{X}{2}$ and is called the edge set of G. The vertex set of G and the edge set of G are denoted by V(G) and E(G), respectively. An element of V(G) is called a vertex of G, and an element of E(G) is called an *edge of G*. We may represent an edge $\{v, w\}$ by vw. If vw is an edge of G, then we say that v is adjacent to w (in G). A subset I of V(G) is an independent set of G if $\{v, w\} \notin E(G)$ for every $v, w \in I$. Let \mathcal{I}_G denote the family of independent sets of G. An independent set J of G is maximal if $J \not\subseteq I$ for each independent set I of G such that $I \neq I$. The size of a smallest maximal independent set of G is denoted by $\mu(G)$.

Holroyd and Talbot introduced the problem of determining whether $\mathcal{I}_{G}^{(r)}$ has the star property for a given graph G and an integer $r \ge 1$. The Holroyd–Talbot (HT) Conjecture [27, Conjecture 7] claims that $\mathcal{I}_G^{(r)}$ has the star property if $\mu(G) \ge 2r$. The author [4] proved that the conjecture is true if $\mu(G)$ is sufficiently large depending on r (see also [11, Lemma 4.4 and Theorem 1.4]). By the EKR Theorem, the conjecture is true if G has no edges. The HT Conjecture has been verified for several classes of graphs [12,13,24–28,33,35]. As demonstrated in [13], for $r > \mu(G)/2$, whether $\mathcal{I}_{G}^{(r)}$ has the star property or not depends on G and r (both cases are possible).

A depth-two claw is a graph consisting of n pairwise disjoint edges x_1y_1, \ldots, x_ny_n together with a vertex $x_0 \notin x_1$ $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ that is adjacent to each of y_1, \ldots, y_n . This graph will be denoted by T_n . Thus, $T_n = (\{x_0, x_1, \ldots, x_n, y_n, y_n\}$ that is adjacent to each of y_1, \ldots, y_n . y_1, \ldots, y_n , $\{x_0y_1, \ldots, x_0y_n, x_1y_1, \ldots, x_ny_n\}$). For each $i \in [n]$, we may take x_i and y_i to be (i, 1) and (i, 2), respectively. Let $X_n = \{x_i : i \in [n]\}$ and

$$\mathcal{L}_n = \left\{ \{ (i_1, j_1), \dots, (i_r, j_r) \} : r \in [n], \{ i_1, \dots, i_r \} \in \binom{[n]}{r}, j_1, \dots, j_r \in \{1, 2\} \right\}.$$

Note that

$$\mathcal{I}_{T_n}^{(r)} = \mathcal{L}_n^{(r)} \cup \left\{ A \cup \{x_0\} : A \in \binom{X_n}{r-1} \right\}.$$

$$\tag{1}$$

The family $\mathcal{I}_{T_n}^{(r)}$ is empty for r > n + 1, and consists only of the set $\{x_0, x_1, \ldots, x_n\}$ for r = n + 1. In [19], Feghali, Johnson and Thomas showed that $\mathcal{I}_{T_n}^{(r)}$ does not have the star property for r = n, and they made the following conjecture.

Conjecture 1.3 ([19]). If $1 \le r \le n - 1$, then $\mathcal{I}_{T_n}^{(r)}$ has the star property.

They proved the conjecture for $r \leq \frac{n+1}{2}$.

Theorem 1.4 ([19]). If $1 \le r \le \frac{n+1}{2}$, then $\mathcal{I}_{T_n}^{(r)}$ has the star property.

In the next section, we settle the full conjecture, using Theorem 1.2 for $r > \frac{n+1}{2}$.

Download English Version:

https://daneshyari.com/en/article/8903011

Download Persian Version:

https://daneshyari.com/article/8903011

Daneshyari.com