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a b s t r a c t

A family A of sets is said to be intersecting if every two sets in A intersect. Two families A
and B are said to be cross-intersecting if each set inA intersects each set in B. For a positive
integer n, let [n] = {1, . . . , n} and Sn = {A ⊆ [n] : 1 ∈ A}. We extend the Erdős–Ko–Rado
Theorem by showing that if A and B are non-empty cross-intersecting families of subsets
of [n], A is intersecting, and a0, a1, . . . , an, b0, b1, . . . , bn are non-negative real numbers
such that ai + bi ≥ an−i + bn−i and an−i ≥ bi for each i ≤ n/2, then∑

A∈A

a|A| +

∑
B∈B

b|B| ≤

∑
A∈Sn

a|A| +

∑
B∈Sn

b|B|.

For a graphG and an integer r ≥ 1, letIG
(r) denote the family of r-element independent sets

ofG. Inspired by a problemofHolroyd and Talbot, Feghali, Johnson and Thomas conjectured
that if r < n and G is a depth-two claw with n leaves, then G has a vertex v such that
{A ∈ IG

(r)
: v ∈ A} is a largest intersecting subfamily of IG

(r). They proved this for r ≤
n+1
2 .

We use the result above to prove the full conjecture.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote non-negative integers or elements of a set, capital
letters such as X to denote sets, and calligraphic letters such as F to denote families (that is, sets whose members are sets
themselves). It is to be assumed that arbitrary sets and families are finite. We call a set A an r-element set if its size |A| is r ,
that is, if it contains exactly r elements (also called members).

The set {1, 2, . . .} of positive integers is denoted by N. For any integer n ≥ 0, the set {i ∈ N : i ≤ n} is denoted by [n].
Note that [0] is the empty set ∅. For a set X , the power set of X (that is, {A : A ⊆ X}) is denoted by 2X . The family of r-element
subsets of X is denoted by

( X
r

)
. The family of r-element sets in a family F is denoted by F (r). If F ⊆ 2X and x ∈ X , then the

family {F ∈ F : x ∈ F} is denoted by F(x) and called a star of F .
We say that a set A intersects a set B if A and B have at least one common element (that is, A∩ B ̸= ∅). A familyA is said to

be intersecting if for every A, B ∈ A, A and B intersect. The stars of a familyF (with
⋃

F∈FF ̸= ∅) are the simplest intersecting
subfamilies of F . We say that F has the star property if at least one of the largest intersecting subfamilies of F is a star of F .

One of themost popular endeavors in extremal set theory is that of determining the size of a largest intersecting subfamily
of a given family F . This started in [18], which features the following classical result, known as the Erdős–Ko–Rado (EKR)
Theorem.

Theorem 1.1 (EKR Theorem [18]). If r ≤ n/2 and A is an intersecting subfamily of
(

[n]
r

)
, then |A| ≤

( n−1
r−1

)
.
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This means that
(

[n]
r

)
has the star property. There are various proofs of the EKR Theorem (see [14,29,31]), two of which

are particularly short and beautiful: Katona’s [31], which introduced the elegant cycle method, and Daykin’s [14], using
the fundamental Kruskal–Katona Theorem [30,32]. The EKR Theorem gave rise to some of the highlights in extremal set
theory [1,20,29,34] and inspired many results that establish how large a system of sets can be under certain intersection
conditions; see [6,15,21,22,23,26,27].

If A and B are families such that each set in A intersects each set in B, then A and B are said to be cross-intersecting.
For intersecting subfamilies of a given family F , the natural question to ask is how large they can be. A natural variant

of this intersection problem is the problem of maximizing the sum or the product of sizes of cross-intersecting subfamilies
(not necessarily distinct or non-empty) of F . This has recently attracted much attention. The relation between the original
intersection problem, the sum problem and the product problem is studied in [7]. Solutions have been obtained for various
families; most of the known results are referenced in [8,9], which treat the product problem for families of subsets of [n] of
size at most r .

Here we consider the sum problem for the case where at least one of two cross-intersecting familiesA and B of subsets of
[n] is an intersecting family. We actually consider a more general setting ofweighted sets, where each set of size i is assigned
two non-negative integers ai and bi, and the objective is to maximize

∑
A∈Aa|A| +

∑
B∈Bb|B|. Note that

∑
A∈A a|A| = |A| if

a0 = a1 = · · · = an = 1. Let Sn denote the star {A ⊆ [n] : 1 ∈ A} of 2[n]. In Section 2, we prove the following extension of
the EKR Theorem.

Theorem 1.2. If A and B are non-empty cross-intersecting families of subsets of [n], A is intersecting, and a0, a1, . . . , an, b0,
b1, . . . , bn are non-negative real numbers such that ai + bi ≥ an−i + bn−i and an−i ≥ bi for each i ≤ n/2, then∑

A∈A

a|A| +

∑
B∈B

b|B| ≤

∑
A∈Sn

a|A| +

∑
B∈Sn

b|B|.

The EKR Theorem is obtained by taking r ≤ n/2, B = A ⊆
(

[n]
r

)
, and bi = 0 = ai − 1 for each i ∈ {0} ∪ [n].

We use Theorem 1.2 to prove a conjecture of Feghali, Johnson and Thomas [19, Conjecture 2.1]. Before stating the
conjecture, we need some further definitions and notation.

A graph G is a pair (X,Y), where X is a set, called the vertex set of G, and Y is a subset of
( X
2

)
and is called the edge set of G.

The vertex set of G and the edge set of G are denoted by V (G) and E(G), respectively. An element of V (G) is called a vertex of
G, and an element of E(G) is called an edge of G. We may represent an edge {v, w} by vw. If vw is an edge of G, then we say
that v is adjacent to w (in G). A subset I of V (G) is an independent set of G if {v, w} /∈ E(G) for every v, w ∈ I . Let IG denote
the family of independent sets of G. An independent set J of G is maximal if J ̸⊆ I for each independent set I of G such that
I ̸= J . The size of a smallest maximal independent set of G is denoted by µ(G).

Holroyd and Talbot introduced the problem of determining whether IG
(r) has the star property for a given graph G and

an integer r ≥ 1. The Holroyd–Talbot (HT) Conjecture [27, Conjecture 7] claims that IG
(r) has the star property if µ(G) ≥ 2r .

The author [4] proved that the conjecture is true if µ(G) is sufficiently large depending on r (see also [11, Lemma 4.4 and
Theorem 1.4]). By the EKR Theorem, the conjecture is true if G has no edges. The HT Conjecture has been verified for several
classes of graphs [12,13,24–28,33,35]. As demonstrated in [13], for r > µ(G)/2, whether IG

(r) has the star property or not
depends on G and r (both cases are possible).

A depth-two claw is a graph consisting of n pairwise disjoint edges x1y1, . . . , xnyn together with a vertex x0 ̸∈

{x1, . . . , xn, y1, . . . , yn} that is adjacent to each of y1, . . . , yn. This graph will be denoted by Tn. Thus, Tn = ({x0, x1, . . . , xn,
y1, . . . , yn}, {x0y1, . . . , x0yn, x1y1, . . . , xnyn}). For each i ∈ [n], we may take xi and yi to be (i, 1) and (i, 2), respectively. Let
Xn = {xi : i ∈ [n]} and

Ln =

{
{(i1, j1), . . . , (ir , jr )} : r ∈ [n], {i1, . . . , ir} ∈

(
[n]
r

)
, j1, . . . , jr ∈ {1, 2}

}
.

Note that

ITn
(r)

= Ln
(r)

∪

{
A ∪ {x0} : A ∈

(
Xn

r − 1

)}
. (1)

The family ITn
(r) is empty for r > n+1, and consists only of the set {x0, x1, . . . , xn} for r = n+1. In [19], Feghali, Johnson

and Thomas showed that ITn
(r) does not have the star property for r = n, and they made the following conjecture.

Conjecture 1.3 ([19]). If 1 ≤ r ≤ n − 1, then ITn
(r) has the star property.

They proved the conjecture for r ≤
n+1
2 .

Theorem 1.4 ([19]). If 1 ≤ r ≤
n+1
2 , then ITn

(r) has the star property.

In the next section, we settle the full conjecture, using Theorem 1.2 for r > n+1
2 .



Download English Version:

https://daneshyari.com/en/article/8903011

Download Persian Version:

https://daneshyari.com/article/8903011

Daneshyari.com

https://daneshyari.com/en/article/8903011
https://daneshyari.com/article/8903011
https://daneshyari.com

