Note

Intersecting families, cross-intersecting families, and a proof of a conjecture of Feghali, Johnson and Thomas

Peter Borg
Department of Mathematics, Faculty of Science, University of Malta, Malta

ARTICLE INFO

Article history:

Received 12 April 2017
Received in revised form 31 January 2018
Accepted 1 February 2018
Available online 2 March 2018

Keywords:

Intersecting family
Cross-intersecting families
Erdős-Ko-Rado theorem
Feghali-Johnson-Thomas conjecture

Abstract

A family \mathcal{A} of sets is said to be intersecting if every two sets in \mathcal{A} intersect. Two families \mathcal{A} and \mathcal{B} are said to be cross-intersecting if each set in \mathcal{A} intersects each set in \mathcal{B}. For a positive integer n, let $[n]=\{1, \ldots, n\}$ and $\mathcal{S}_{n}=\{A \subseteq[n]: 1 \in A\}$. We extend the Erdős-Ko-Rado Theorem by showing that if \mathcal{A} and \mathcal{B} are non-empty cross-intersecting families of subsets of $[n], \mathcal{A}$ is intersecting, and $a_{0}, a_{1}, \ldots, a_{n}, b_{0}, b_{1}, \ldots, b_{n}$ are non-negative real numbers such that $a_{i}+b_{i} \geq a_{n-i}+b_{n-i}$ and $a_{n-i} \geq b_{i}$ for each $i \leq n / 2$, then $$
\sum_{A \in \mathcal{A}} a_{|A|}+\sum_{B \in \mathcal{B}} b_{|B|} \leq \sum_{A \in \mathcal{S}_{n}} a_{|A|}+\sum_{B \in \mathcal{S}_{n}} b_{|B|}
$$

For a graph G and an integer $r \geq 1$, let $\mathcal{I}_{G}{ }^{(r)}$ denote the family of r-element independent sets of G. Inspired by a problem of Holroyd and Talbot, Feghali, Johnson and Thomas conjectured that if $r<n$ and G is a depth-two claw with n leaves, then G has a vertex v such that $\left\{A \in \mathcal{I}_{G}{ }^{(r)}: v \in A\right\}$ is a largest intersecting subfamily of $\mathcal{I}_{G}{ }^{(r)}$. They proved this for $r \leq \frac{n+1}{2}$. We use the result above to prove the full conjecture.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote non-negative integers or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose members are sets themselves). It is to be assumed that arbitrary sets and families are finite. We call a set A an r-element set if its size $|A|$ is r, that is, if it contains exactly r elements (also called members).

The set $\{1,2, \ldots\}$ of positive integers is denoted by \mathbb{N}. For any integer $n \geq 0$, the set $\{i \in \mathbb{N}: i \leq n\}$ is denoted by [n]. Note that [0] is the empty set \emptyset. For a set X, the power set of X (that is, $\{A: A \subseteq X\}$) is denoted by 2^{X}. The family of r-element subsets of X is denoted by $\binom{X}{r}$. The family of r-element sets in a family \mathcal{F} is denoted by $\mathcal{F}^{(r)}$. If $\mathcal{F} \subseteq 2^{X}$ and $x \in X$, then the family $\{F \in \mathcal{F}: x \in F\}$ is denoted by $\mathcal{F}(x)$ and called a star of \mathcal{F}.

We say that a set A intersects a set B if A and B have at least one common element (that is, $A \cap B \neq \emptyset$). A family \mathcal{A} is said to be intersecting if for every $A, B \in \mathcal{A}, A$ and B intersect. The stars of a family \mathcal{F} (with $\bigcup_{F \in \mathcal{F}} F \neq \emptyset$) are the simplest intersecting subfamilies of \mathcal{F}. We say that \mathcal{F} has the star property if at least one of the largest intersecting subfamilies of \mathcal{F} is a star of \mathcal{F}.

One of the most popular endeavors in extremal set theory is that of determining the size of a largest intersecting subfamily of a given family \mathcal{F}. This started in [18], which features the following classical result, known as the Erdős-Ko-Rado (EKR) Theorem.

Theorem 1.1 (EKR Theorem [18]). If $r \leq n / 2$ and \mathcal{A} is an intersecting subfamily of $\binom{[n]}{r}$, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

E-mail address: peter.borg@um.edu.mt.

This means that $\binom{[n]}{r}$ has the star property. There are various proofs of the EKR Theorem (see [14,29,31]), two of which are particularly short and beautiful: Katona's [31], which introduced the elegant cycle method, and Daykin's [14], using the fundamental Kruskal-Katona Theorem [30,32]. The EKR Theorem gave rise to some of the highlights in extremal set theory $[1,20,29,34]$ and inspired many results that establish how large a system of sets can be under certain intersection conditions; see [6,15,21,22,23,26,27].

If \mathcal{A} and \mathcal{B} are families such that each set in \mathcal{A} intersects each set in \mathcal{B}, then \mathcal{A} and \mathcal{B} are said to be cross-intersecting.
For intersecting subfamilies of a given family \mathcal{F}, the natural question to ask is how large they can be. A natural variant of this intersection problem is the problem of maximizing the sum or the product of sizes of cross-intersecting subfamilies (not necessarily distinct or non-empty) of \mathcal{F}. This has recently attracted much attention. The relation between the original intersection problem, the sum problem and the product problem is studied in [7]. Solutions have been obtained for various families; most of the known results are referenced in [8,9], which treat the product problem for families of subsets of [n] of size at most r.

Here we consider the sum problem for the case where at least one of two cross-intersecting families \mathcal{A} and \mathcal{B} of subsets of $[n]$ is an intersecting family. We actually consider a more general setting of weighted sets, where each set of size i is assigned two non-negative integers a_{i} and b_{i}, and the objective is to maximize $\sum_{A \in \mathcal{A}} a_{|A|}+\sum_{B \in \mathcal{B}} b_{|B|}$. Note that $\sum_{A \in \mathcal{A}} a_{|A|}=|\mathcal{A}|$ if $a_{0}=a_{1}=\cdots=a_{n}=1$. Let \mathcal{S}_{n} denote the star $\{A \subseteq[n]: 1 \in A\}$ of $2^{[n]}$. In Section 2, we prove the following extension of the EKR Theorem.

Theorem 1.2. If \mathcal{A} and \mathcal{B} are non-empty cross-intersecting families of subsets of $[n], \mathcal{A}$ is intersecting, and $a_{0}, a_{1}, \ldots, a_{n}, b_{0}$, b_{1}, \ldots, b_{n} are non-negative real numbers such that $a_{i}+b_{i} \geq a_{n-i}+b_{n-i}$ and $a_{n-i} \geq b_{i}$ for each $i \leq n / 2$, then

$$
\sum_{A \in \mathcal{A}} a_{|A|}+\sum_{B \in \mathcal{B}} b_{|B|} \leq \sum_{A \in \mathcal{S}_{n}} a_{|A|}+\sum_{B \in \mathcal{S}_{n}} b_{|B|}
$$

The EKR Theorem is obtained by taking $r \leq n / 2, \mathcal{B}=\mathcal{A} \subseteq\binom{[n]}{r}$, and $b_{i}=0=a_{i}-1$ for each $i \in\{0\} \cup[n]$.
We use Theorem 1.2 to prove a conjecture of Feghali, Johnson and Thomas [19, Conjecture 2.1]. Before stating the conjecture, we need some further definitions and notation.

A graph G is a pair (X, \mathcal{Y}), where X is a set, called the vertex set of G, and \mathcal{Y} is a subset of $\binom{X}{2}$ and is called the edge set of G. The vertex set of G and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. An element of $V(G)$ is called a vertex of G, and an element of $E(G)$ is called an edge of G. We may represent an edge $\{v, w\}$ by $v w$. If $v w$ is an edge of G, then we say that v is adjacent to w (in G). A subset I of $V(G)$ is an independent set of G if $\{v, w\} \notin E(G)$ for every $v, w \in I$. Let \mathcal{I}_{G} denote the family of independent sets of G. An independent set J of G is maximal if $J \nsubseteq I$ for each independent set I of G such that $I \neq J$. The size of a smallest maximal independent set of G is denoted by $\mu(G)$.

Holroyd and Talbot introduced the problem of determining whether $\mathcal{I}_{G}{ }^{(r)}$ has the star property for a given graph G and an integer $r \geq 1$. The Holroyd-Talbot (HT) Conjecture [27, Conjecture 7] claims that $\mathcal{I}_{G}{ }^{(r)}$ has the star property if $\mu(G) \geq 2 r$. The author [4] proved that the conjecture is true if $\mu(G)$ is sufficiently large depending on r (see also [11, Lemma 4.4 and Theorem 1.4]). By the EKR Theorem, the conjecture is true if G has no edges. The HT Conjecture has been verified for several classes of graphs [12,13,24-28,33,35]. As demonstrated in [13], for $r>\mu(G) / 2$, whether $\mathcal{I}_{G}{ }^{(r)}$ has the star property or not depends on G and r (both cases are possible).

A depth-two claw is a graph consisting of n pairwise disjoint edges $x_{1} y_{1}, \ldots, x_{n} y_{n}$ together with a vertex $x_{0} \notin$ $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ that is adjacent to each of y_{1}, \ldots, y_{n}. This graph will be denoted by T_{n}. Thus, $T_{n}=\left(\left\{x_{0}, x_{1}, \ldots, x_{n}\right.\right.$, $\left.\left.y_{1}, \ldots, y_{n}\right\},\left\{x_{0} y_{1}, \ldots, x_{0} y_{n}, x_{1} y_{1}, \ldots, x_{n} y_{n}\right\}\right)$. For each $i \in[n]$, we may take x_{i} and y_{i} to be (i,1) and (i,2), respectively. Let $X_{n}=\left\{x_{i}: i \in[n]\right\}$ and

$$
\mathcal{L}_{n}=\left\{\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{r}, j_{r}\right)\right\}: r \in[n],\left\{i_{1}, \ldots, i_{r}\right\} \in\binom{[n]}{r}, j_{1}, \ldots, j_{r} \in\{1,2\}\right\} .
$$

Note that

$$
\begin{equation*}
\mathcal{I}_{T_{n}}{ }^{(r)}=\mathcal{L}_{n}{ }^{(r)} \cup\left\{A \cup\left\{x_{0}\right\}: A \in\binom{X_{n}}{r-1}\right\} . \tag{1}
\end{equation*}
$$

The family $\mathcal{I}_{T_{n}}{ }^{(r)}$ is empty for $r>n+1$, and consists only of the set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ for $r=n+1$. In [19], Feghali, Johnson and Thomas showed that $\mathcal{I}_{T_{n}}{ }^{(r)}$ does not have the star property for $r=n$, and they made the following conjecture.

Conjecture 1.3 ([19]). If $1 \leq r \leq n-1$, then $\mathcal{I}_{T_{n}}{ }^{(r)}$ has the star property.
They proved the conjecture for $r \leq \frac{n+1}{2}$.
Theorem 1.4 ([19]). If $1 \leq r \leq \frac{n+1}{2}$, then $\mathcal{I}_{T_{n}}{ }^{(r)}$ has the star property.
In the next section, we settle the full conjecture, using Theorem 1.2 for $r>\frac{n+1}{2}$.

https://daneshyari.com/en/article/8903011

Download Persian Version:

https://daneshyari.com/article/8903011

Daneshyari.com

