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a b s t r a c t

A complete classification is given of pentavalent 3-geodesic-transitive graphs which are
not 3-arc-transitive, which shows that a pentavalent 3-geodesic-transitive but not 3-arc-
transitive graph is one of the following graphs: (2 × 6)-grid, H(5, 2), the icosahedron, the
incidence graph of the 2-(11, 5, 2)-design, the Wells graph and the Sylvester graph.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ , we use V (Γ ) and Aut(Γ ) to denote its
vertex set and automorphism group, respectively. For the group theoretic terminology not defined here we refer the reader
to [3,8,23]. A geodesic from a vertex u to a vertex v in a graphΓ is one of the shortest paths from u to v inΓ , and this geodesic
is called an s-geodesic if the distance between u and v is s. Then Γ is said to be s-geodesic transitive if, Γ has an s-geodesic,
and for each 1 ≤ i ≤ s, the automorphism group Aut(Γ ) is transitive on the set of i-geodesics of Γ . For a positive integer s,
an s-arc ofΓ is a sequence of vertices (v0, v1, . . . , vs) inΓ such that vi, vi+1 are adjacent and vj−1 ̸= vj+1 where 0 ≤ i ≤ s−1
and 1 ≤ j ≤ s− 1. In particular, 1-arcs are called arcs. Then Γ is said to be s-arc transitive if, for each i ≤ s, the group Aut(Γ )
is transitive on the set of i-arcs of Γ . Thus a graph is s-geodesic transitive (s-arc transitive), then it is t-geodesic transitive
(t-arc transitive) for each t ≤ s.

Clearly, every s-geodesic is an s-arc, but some s-arcs may not be s-geodesics whenever s ≥ 2. If Γ has girth 3 (the girth of
Γ , denoted by girth(Γ ), is the length of the shortest cycle in Γ ), then the 3-arcs contained in a triangle are not 3-geodesics.
The graph in Fig. 1 is the icosahedron, which is 3-geodesic-transitive but not 3-arc-transitive with valency 5 and girth 3.
Thus the family of 3-arc-transitive graphs is properly contained in the family of 3-geodesic-transitive graphs.

The first remarkable result about s-arc transitive graphs comes from Tutte [20,21], and this family of graphs has been
studied extensively, see [1,14,16,19,22,24]. The local structure of the family of 2-geodesic-transitive graphs was determined
in [5]. In [4], Devillers, Li, Praeger and the author classified 2-geodesic-transitive graphs of valency 4. Later, in [6], a
reduction theorem for the family of normal 2-geodesic-transitive Cayley graphswas produced and thosewhich are complete
multipartite graphs were also classified. The family of 2-geodesic-transitive but not 2-arc-transitive graphs with prime
valency was precisely determined in [7]. In [15], the author classified the family of 3-geodesic-transitive but not 3-arc-
transitive graphs of valency 4. Li and Feng [17] studied the family of pentavalent 1-regular graphs of square free order.
Following this, Hua et al. [13] classified pentavalent symmetric graphs of order 2pq. Guo and Feng [10] determined the
stabilizers of pentavalent symmetric graphs. In [18], Pan, Luo and Liu gave a classification of arc-transitive pentavalent graphs
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Fig. 1. Icosahedron.

of order 4pq, where p, q ≥ 5 are distinct primes. Recently, Du et al. [9] investigated pentavalent symmetric graphs admitting
vertex-transitive non-abelian simple groups. Despite all of these efforts, however, further classifications of symmetric graphs
with valency 5 seem to be very difficult, it has been considered for many years by several authors, but it still has not been
achieved.

The purpose of this paper is to give a complete classification of the family of pentavalent 3-geodesic-transitive but not
3-arc-transitive graphs, stated in the following main theorem.

Theorem 1.1. Let Γ be a connected pentavalent 3-geodesic-transitive but not 3-arc-transitive graph. Then Γ is one of the
following graphs: (2 × 6)-grid, H(5, 2), the incidence graph of the 2-(11, 5, 2)-design, the icosahedron, the Wells graph or the
Sylvester graph.

The Hamming graphH(5, 2) has vertex set ∆5
= {(x1, x2, x3, x4, x5)|xi ∈ ∆}, the cartesian product of 5-copies of ∆, where

∆ = {1, a}, and two vertices v and v′ are adjacent if and only if they are different in exactly one coordinate. Form, n ≥ 2, the
(m × n)-grid is the graph with vertex set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and 2 distinct vertices (i, j) and (r, s) are adjacent if
and only if i = r or j = s. The (m×n)-grid is also the line graph of the complete bipartite graph Km,n, and so its automorphism
group is Sm × Sn when m ̸= n and Sm ≀ S2 when m = n. For a graph Γ , its complement Γ is the graph with vertex set V (Γ ),
and two vertices are adjacent if and only if they are not adjacent in Γ .

The 2-(11, 5, 2)-design is a pairD = {X ,B}, whereX is a set of points of cardinality 11, andB a set of 5-subsets ofX called
blocks, with the property that every 2 points are contained in exactly 2 blocks. The incidence graph of D is a bipartite graph
with two parts X and B such that a point x of X is adjacent to a block b of B if and only if x is contained in b, and this graph
has automorphism group M12 with 22 vertices, see [2, p. 227] and [12]. The Wells graph (also known as the Armanios–Wells
graph) is an antipodal graph of 32 vertices and diameter 4, and it is the unique double cover without 4-cycles of the folded
5-cube. The automorphism group of theWells graph is Z1+4

2 : A5, where Z1+4
2 = D8 ◦Q8 is an extra-special group of order 32

and A5 is the vertex stabilizer, refer to [2, p. 266]. The Sylvester graph is the graph on the 36 pairs (ovoid,spread) in GQ (2, 2),
where (O, S) is adjacent to (O′, S ′) when the unique point in both O and O′ lies on the unique line in both S and S ′. This graph
has 36 vertices with automorphism group Aut(S6) and vertex-stabilizer AGL(1, 5) × Z2, see Section 13.1 A of [2].

Finally, we pose a problem. The family of 2-geodesic-transitive but not 2-arc-transitive graphs with prime valency was
precisely determined in [7]. Thus the following problem is interesting to be investigated.

Problem 1.2. Classify the family of 3-geodesic-transitive but not 3-arc-transitive graphs of prime valency.

2. Proof of Theorem 1.1

We prove our main theorem by a series of lemmas. In the characterization of 3-geodesic-transitive graphs, the following
constants are useful. Our definition is inspired by the concept of intersection arrays defined for the distance-regular graphs
(see [2]).

Definition 2.1. Let Γ be an s-geodesic-transitive graph, u ∈ V (Γ ), and let v ∈ Γi(u), i ≤ s. Then the number of edges from
v to Γi−1(u), Γi(u), and Γi+1(u) does not depend on the choice of v and these numbers are denoted, respectively, by ci, ai, bi.

Clearly we have that ai + bi + ci is equal to the valency of Γ whenever the constants are well-defined. Note that for
3-geodesic-transitive graphs, the constants are always well-defined for i = 1, 2, 3.

A subgraph X of a graph Γ is an induced subgraph if two vertices of X are adjacent in X if and only if they are adjacent in
Γ . When U ⊆ V (Γ ), we denote by [U] the subgraph of Γ induced by U . The diameter diam(Γ ) of a graph Γ is the maximum



Download English Version:

https://daneshyari.com/en/article/8903013

Download Persian Version:

https://daneshyari.com/article/8903013

Daneshyari.com

https://daneshyari.com/en/article/8903013
https://daneshyari.com/article/8903013
https://daneshyari.com

