The pentavalent three-geodesic-transitive graphs*

Wei Jin
School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, PR China
Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, PR China

ARTICLE INFO

Article history:

Received 17 May 2017
Received in revised form 27 January 2018
Accepted 7 February 2018
Available online 28 February 2018

Keywords:

Symmetric graph
Pentavalent
3-geodesic-transitive graph

Abstract

A complete classification is given of pentavalent 3-geodesic-transitive graphs which are not 3-arc-transitive, which shows that a pentavalent 3-geodesic-transitive but not 3-arctransitive graph is one of the following graphs: (2×6)-grid, $\mathrm{H}(5,2)$, the icosahedron, the incidence graph of the 2-(11, 5, 2)-design, the Wells graph and the Sylvester graph.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ, we use $V(\Gamma)$ and Aut (Γ) to denote its vertex set and automorphism group, respectively. For the group theoretic terminology not defined here we refer the reader to $[3,8,23]$. A geodesic from a vertex u to a vertex v in a graph Γ is one of the shortest paths from u to v in Γ, and this geodesic is called an s-geodesic if the distance between u and v is s. Then Γ is said to be s-geodesic transitive if, Γ has an s-geodesic, and for each $1 \leq i \leq s$, the automorphism group $\operatorname{Aut}(\Gamma)$ is transitive on the set of i-geodesics of Γ. For a positive integer s, an s-arc of Γ is a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ in Γ such that v_{i}, v_{i+1} are adjacent and $v_{j-1} \neq v_{j+1}$ where $0 \leq i \leq s-1$ and $1 \leq j \leq s-1$. In particular, 1 -arcs are called arcs. Then Γ is said to be s-arc transitive if, for each $i \leq s$, the group Aut (Γ) is transitive on the set of i-arcs of Γ. Thus a graph is s-geodesic transitive (s-arc transitive), then it is t-geodesic transitive (t-arc transitive) for each $t \leq s$.

Clearly, every s-geodesic is an s-arc, but some s-arcs may not be s-geodesics whenever $s \geq 2$. If Γ has girth 3 (the girth of Γ, denoted by $\operatorname{girth}(\Gamma)$, is the length of the shortest cycle in Γ), then the 3-arcs contained in a triangle are not 3-geodesics. The graph in Fig. 1 is the icosahedron, which is 3-geodesic-transitive but not 3-arc-transitive with valency 5 and girth 3 . Thus the family of 3-arc-transitive graphs is properly contained in the family of 3-geodesic-transitive graphs.

The first remarkable result about s-arc transitive graphs comes from Tutte [20,21], and this family of graphs has been studied extensively, see [1,14,16,19,22,24]. The local structure of the family of 2-geodesic-transitive graphs was determined in [5]. In [4], Devillers, Li, Praeger and the author classified 2-geodesic-transitive graphs of valency 4. Later, in [6], a reduction theorem for the family of normal 2-geodesic-transitive Cayley graphs was produced and those which are complete multipartite graphs were also classified. The family of 2 -geodesic-transitive but not 2 -arc-transitive graphs with prime valency was precisely determined in [7]. In [15], the author classified the family of 3-geodesic-transitive but not 3-arctransitive graphs of valency 4. Li and Feng [17] studied the family of pentavalent 1-regular graphs of square free order. Following this, Hua et al. [13] classified pentavalent symmetric graphs of order 2pq. Guo and Feng [10] determined the stabilizers of pentavalent symmetric graphs. In [18], Pan, Luo and Liu gave a classification of arc-transitive pentavalent graphs

[^0]

Fig. 1. Icosahedron.
of order $4 p q$, where $p, q \geq 5$ are distinct primes. Recently, Du et al. [9] investigated pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups. Despite all of these efforts, however, further classifications of symmetric graphs with valency 5 seem to be very difficult, it has been considered for many years by several authors, but it still has not been achieved.

The purpose of this paper is to give a complete classification of the family of pentavalent 3-geodesic-transitive but not 3 -arc-transitive graphs, stated in the following main theorem.

Theorem 1.1. Let Γ be a connected pentavalent 3-geodesic-transitive but not 3-arc-transitive graph. Then Γ is one of the following graphs: $\overline{(2 \times 6) \text {-grid, }} \mathrm{H}(5,2)$, the incidence graph of the 2-(11, 5, 2)-design, the icosahedron, the Wells graph or the Sylvester graph.

The Hamming graph $\mathrm{H}(5,2)$ has vertex set $\Delta^{5}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{i} \in \Delta\right\}$, the cartesian product of 5-copies of Δ, where $\Delta=\{1, a\}$, and two vertices v and v^{\prime} are adjacent if and only if they are different in exactly one coordinate. For $m, n \geq 2$, the $(m \times n)$-grid is the graph with vertex set $\{(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\}$, and 2 distinct vertices (i, j) and (r, s) are adjacent if and only if $i=r$ or $j=s$. The $(m \times n)$-grid is also the line graph of the complete bipartite graph $K_{m, n}$, and so its automorphism group is $S_{m} \times S_{n}$ when $m \neq n$ and $S_{m} \imath S_{2}$ when $m=n$. For a graph Γ, its complement $\bar{\Gamma}$ is the graph with vertex set $V(\Gamma)$, and two vertices are adjacent if and only if they are not adjacent in Γ.

The $2-(11,5,2)$-design is a pair $\mathcal{D}=\{\mathcal{X}, \mathcal{B}\}$, where \mathcal{X} is a set of points of cardinality 11 , and \mathcal{B} a set of 5 -subsets of \mathcal{X} called blocks, with the property that every 2 points are contained in exactly 2 blocks. The incidence graph of \mathcal{D} is a bipartite graph with two parts \mathcal{X} and \mathcal{B} such that a point x of \mathcal{X} is adjacent to a block b of \mathcal{B} if and only if x is contained in b, and this graph has automorphism group M_{12} with 22 vertices, see [2, p. 227] and [12]. The Wells graph (also known as the Armanios-Wells graph) is an antipodal graph of 32 vertices and diameter 4, and it is the unique double cover without 4-cycles of the folded 5 -cube. The automorphism group of the Wells graph is $\mathbb{Z}_{2}^{1+4}: A_{5}$, where $\mathbb{Z}_{2}^{1+4}=D_{8} \circ Q_{8}$ is an extra-special group of order 32 and A_{5} is the vertex stabilizer, refer to [2, p. 266]. The Sylvester graph is the graph on the 36 pairs (ovoid,spread) in $G Q(2,2)$, where (O, S) is adjacent to $\left(O^{\prime}, S^{\prime}\right)$ when the unique point in both O and O^{\prime} lies on the unique line in both S and S^{\prime}. This graph has 36 vertices with automorphism group $\operatorname{Aut}\left(S_{6}\right)$ and vertex-stabilizer $\operatorname{AGL}(1,5) \times \mathbb{Z}_{2}$, see Section 13.1 A of [2].

Finally, we pose a problem. The family of 2-geodesic-transitive but not 2-arc-transitive graphs with prime valency was precisely determined in [7]. Thus the following problem is interesting to be investigated.

Problem 1.2. Classify the family of 3-geodesic-transitive but not 3-arc-transitive graphs of prime valency.

2. Proof of Theorem 1.1

We prove our main theorem by a series of lemmas. In the characterization of 3-geodesic-transitive graphs, the following constants are useful. Our definition is inspired by the concept of intersection arrays defined for the distance-regular graphs (see [2]).

Definition 2.1. Let Γ be an s-geodesic-transitive graph, $u \in V(\Gamma)$, and let $v \in \Gamma_{i}(u), i \leq s$. Then the number of edges from v to $\Gamma_{i-1}(u), \Gamma_{i}(u)$, and $\Gamma_{i+1}(u)$ does not depend on the choice of v and these numbers are denoted, respectively, by c_{i}, a_{i}, b_{i}.

Clearly we have that $a_{i}+b_{i}+c_{i}$ is equal to the valency of Γ whenever the constants are well-defined. Note that for 3-geodesic-transitive graphs, the constants are always well-defined for $i=1,2,3$.

A subgraph X of a graph Γ is an induced subgraph if two vertices of X are adjacent in X if and only if they are adjacent in Γ. When $U \subseteq V(\Gamma)$, we denote by $[U]$ the subgraph of Γ induced by U. The diameter $\operatorname{diam}(\Gamma)$ of a graph Γ is the maximum

https://daneshyari.com/en/article/8903013

Download Persian Version:

https://daneshyari.com/article/8903013

Daneshyari.com

[^0]: ${ }^{*}$ Supported by NNSF of China (11661039, 11561027) and NSF of Jiangxi (20171BAB201010, 20171BCB23046, 20161BAB211018, 2016RC16).
 E-mail address: jinwei@jxufe.edu.cn.

