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C,. Recent research shows that (a, a + 1)-cores with distinct parts are enumerated by
another important sequence— Fibonacci numbers F,. In this paper, we consider the abacus
description of (a, b)-cores to introduce the natural grading and generalize this result to
(a, as + 1)-cores. We also use the bijection with Dyck paths to count the number of

Ki ds: . . . . . .
CZ{Zngr:ition (2k — 1, 2k + 1)-cores with distinct parts. We give a second grading to Fibonacci numbers,
Dyck path induced by the bigraded Catalan sequence C, 5(q, t).

Abacus diagram © 2017 Elsevier B.V. All rights reserved.

Fibonacci numbers

1. Introduction

For two coprime integers a and b, the rational Catalan number C, 5 and its bigraded generalization Cg 5(q, t) have caught
the attention of different researchers due to their connection to algebraic combinatorics and geometry [4,5,7,8]. Catalan
numbers can be analyzed from the perspective of different combinatorial objects: rational (a, b)-Dyck paths, simultaneous
(a, b)-core partitions and abacus diagrams.

In 2015, Amdeberhan [1] conjectured that the number of (a, a 4+ 1)-cores with distinct parts is equal to the Fibonacci
number F,, 1, and also conjectured the formulas for the largest size and the average size of such partitions. This conjecture
has been proven by Xiong:

Theorem 1 (Xiong, [14]). For (a, a + 1)-core partitions with distinct parts, we have

1
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2) the largest size of such partitionis | 1(“3") |;

d 3
) there are 2=~ uch partitions of maximal size;
)

the total number of these partitions and the average sizes are, respectively, given by
FiEiFy

the number of such partitions is Fqy1;
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> FFf and

F,
i+j+k=a+1 i+j+k=a+1 a+1

Part (1) of the above theorem was independently proved by Straub [13].
Another interesting conjecture of Amdeberhan is the number of (2k — 1, 2k + 1)-cores with distinct parts. This conjecture
has been proven by Yan, Qin, Jin and Zhou:

Theorem 2 (YQJZ, [16]). The number of (2k — 1, 2k + 1)-cores with distinct parts is equal to 22,
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The proof uses somewhat complicated arguments about the poset structure of cores. Results by Zaleski and Zeilberger [ 18]
improve the argument using Experimental Mathematics tools in Maple. More recently Baek, Nam and Yu provided a simpler
bijective proofin [6].

Another set of combinatorial objects that has caught the attention of a number of researchers [12,13,15,17] is the set of
(a, as & 1)-cores with distinct parts. In particular, there is a Fibonacci-like recursive relation for the number of such cores:

Theorem 3 (Straub, [13]). The number E; (a) of (a, as — 1)-core partitions with distinct parts is characterized by E7 (1) =
1, E7(2) = sand, for a > 3,

E; (a) =E; (a—1)+sE; (a—2).

Theorem 4 (Nath and Sellers, [12]). The number E}(a) of (a, as + 1)-core partitions with distinct parts is characterized by
Ef(1)=1, Ef(2)=s+ 1and, fora> 3,

Ef(a) =Ef(a— 1)+ sES(a —2).

In this paper, we analyze simultaneous core partitions in the context of Anderson’s bijection and in Section 3 we provide
a simple description of the set of (a, as + 1)-cores with distinct parts in terms of abacus diagrams, which also allows us to
provide another proof of Theorem 1 parts (1), (2) and (3) in Section 4.

In Section 5 we use the connection between cores and Dyck paths to provide another simple proof of Theorem 2.

In Section 6 we introduce graded Fibonacci numbers

Fan(@) =) g™,
K

where the sum is taken over all (a, b)-cores « with distinct parts and area is some statistic on (a, b)-cores. We show that
Fg.0+1(1) = F,11-the regular Fibonacci sequence, and prove recursive relations for FE(,S)(q) = Fg 4s+1(q). Using properties of
Fa.a+1(q) we provide another proof of Theorem 4 and another proof of Theorem 1 part (4).

In Section 7 we introduce bigraded Fibonacci number as a summand of bigraded Catalan numbers:

FCES)(Q, t) — Z qarea(n)tbounce(n),
b g

where the sum is taken over all (a, as + 1)-Dyck paths corresponding to (a, as + 1)-cores with distinct parts, and statistics
(area, bounce) are two standard statistics on Dyck paths (see [11]).

Using abacus diagrams, we can get a simple formula for FC(,S) (q, t) and prove a theorem that gives recursive relations similar
to the recursive relations for regular Fibonacci numbers. We use the standard notation (s), = 1414+ --- + 1571

Theorem 5. Normalized bigraded Fibonacci numbers ?és)(q, t) satisfy the recursive relations
FOL(q. ) = FAq. ) + qt(8)guaFiy(q. £) = Fqt, 1) + qt(s)g FY (at?. ),

with initial conditions F{'(q, t) = F"(q, t) = 1.

2. Background and notation

For two coprime numbers a and b consider a rectangle R, , on the square lattice with bottom-left corner at the origin
and top-right corner at (a, b). We call the diagonal from (0, 0) to (a, b) the main diagonal of the rectangle R, ;. An (a, b)-Dyck
path is a lattice path from (0, 0) to (a, b) that consists of North and East steps and that lies weakly above the main diagonal.
Denote the set of (a, b)-Dyck paths by Dg p.

For a box in R, ;, with bottom-right corner coordinates (x, y), define the rank of the box to be equal to ay — bx (see Fig. 1,
left). Note that a box has positive rank if and only if it lies above the main diagonal. For a rational Dyck path 7z, we define the
area statistic area(s ) to be the number of boxes in R, , with positive ranks that are below 7.

Denote the set of ranks of all the area boxes of 7 as « (). Note that a(;r) does not contain any multiples of a or b and it
has an (a, b)-nested property, that is,

(iea(r),i>a)=i—aca(r), (ea(r),j>b)=j—beca(r) (1)
Also note that «(7r ) completely determines the Dyck path 7.

Remark 6. The (a, b)-nested property of «(;r) is equivalent to the (a, b)-invariant property of the complement of ()
(see [8]).
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