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a b s t r a c t

The notion of (a, b)-cores is closely related to rational (a, b)-Dyck paths via the bijection
due to J. Anderson, and thus the number of (a, a+ 1)-cores is given by the Catalan number
Ca. Recent research shows that (a, a + 1)-cores with distinct parts are enumerated by
another important sequence— Fibonacci numbers Fa. In this paper, we consider the abacus
description of (a, b)-cores to introduce the natural grading and generalize this result to
(a, as + 1)-cores. We also use the bijection with Dyck paths to count the number of
(2k− 1, 2k+ 1)-cores with distinct parts. We give a second grading to Fibonacci numbers,
induced by the bigraded Catalan sequence Ca,b(q, t).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For two coprime integers a and b, the rational Catalan number Ca,b and its bigraded generalization Ca,b(q, t) have caught
the attention of different researchers due to their connection to algebraic combinatorics and geometry [4,5,7,8]. Catalan
numbers can be analyzed from the perspective of different combinatorial objects: rational (a, b)-Dyck paths, simultaneous
(a, b)-core partitions and abacus diagrams.

In 2015, Amdeberhan [1] conjectured that the number of (a, a + 1)-cores with distinct parts is equal to the Fibonacci
number Fa+1, and also conjectured the formulas for the largest size and the average size of such partitions. This conjecture
has been proven by Xiong:

Theorem 1 (Xiong, [14]). For (a, a + 1)-core partitions with distinct parts, we have

(1) the number of such partitions is Fa+1;
(2) the largest size of such partition is

⌊ 1
3

(a+1
2

)⌋
;

(3) there are 3−(−1)a mod 3

2 such partitions of maximal size;
(4) the total number of these partitions and the average sizes are, respectively, given by∑

i+j+k=a+1

FiFjFk and
∑

i+j+k=a+1

FiFjFk
Fa+1

.

Part (1) of the above theorem was independently proved by Straub [13].
Another interesting conjecture of Amdeberhan is the number of (2k−1, 2k+1)-cores with distinct parts. This conjecture

has been proven by Yan, Qin, Jin and Zhou:

Theorem 2 (YQJZ, [16]). The number of (2k − 1, 2k + 1)-cores with distinct parts is equal to 22k−2.
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The proof uses somewhat complicated arguments about the poset structure of cores. Results by Zaleski and Zeilberger [18]
improve the argument using Experimental Mathematics tools in Maple. More recently Baek, Nam and Yu provided a simpler
bijective proof in [6].

Another set of combinatorial objects that has caught the attention of a number of researchers [12,13,15,17] is the set of
(a, as ± 1)-cores with distinct parts. In particular, there is a Fibonacci-like recursive relation for the number of such cores:

Theorem 3 (Straub, [13]). The number E−
s (a) of (a, as − 1)-core partitions with distinct parts is characterized by E−

s (1) =

1, E−
s (2) = s and, for a ≥ 3,

E−

s (a) = E−

s (a − 1) + sE−

s (a − 2).

Theorem 4 (Nath and Sellers, [12]). The number E+
s (a) of (a, as + 1)-core partitions with distinct parts is characterized by

E+
s (1) = 1, E+

s (2) = s + 1 and, for a ≥ 3,

E+

s (a) = E+

s (a − 1) + sE+

s (a − 2).

In this paper, we analyze simultaneous core partitions in the context of Anderson’s bijection and in Section 3 we provide
a simple description of the set of (a, as + 1)-cores with distinct parts in terms of abacus diagrams, which also allows us to
provide another proof of Theorem 1 parts (1), (2) and (3) in Section 4.

In Section 5 we use the connection between cores and Dyck paths to provide another simple proof of Theorem 2.
In Section 6 we introduce graded Fibonacci numbers

Fa,b(q) =

∑
κ

qarea(κ),

where the sum is taken over all (a, b)-cores κ with distinct parts and area is some statistic on (a, b)-cores. We show that
Fa,a+1(1) = Fa+1-the regular Fibonacci sequence, and prove recursive relations for F (s)

a (q) := Fa,as+1(q). Using properties of
Fa,a+1(q) we provide another proof of Theorem 4 and another proof of Theorem 1 part (4).

In Section 7 we introduce bigraded Fibonacci number as a summand of bigraded Catalan numbers:

F (s)
a (q, t) =

∑
π

qarea(π )tbounce(π ),

where the sum is taken over all (a, as + 1)-Dyck paths corresponding to (a, as + 1)-cores with distinct parts, and statistics
(area, bounce) are two standard statistics on Dyck paths (see [11]).

Using abacus diagrams,we can get a simple formula for F (s)
a (q, t) and prove a theorem that gives recursive relations similar

to the recursive relations for regular Fibonacci numbers. We use the standard notation (s)r = 1 + r + · · · + r s−1.

Theorem 5. Normalized bigraded Fibonacci numbers F̃ (s)
a (q, t) satisfy the recursive relations

F̃ (s)
a+1(q, t) = F̃ (s)

a (q, t) + qta(s)qta F̃
(s)
a−1(q, t) = F̃ (s)

a (qt, t) + qt(s)qt F̃
(s)
a−1(qt

2, t),

with initial conditions F̃ (s)
0 (q, t) = F̃ (s)

1 (q, t) = 1.

2. Background and notation

For two coprime numbers a and b consider a rectangle Ra,b on the square lattice with bottom-left corner at the origin
and top-right corner at (a, b). We call the diagonal from (0, 0) to (a, b) themain diagonal of the rectangle Ra,b. An (a, b)-Dyck
path is a lattice path from (0, 0) to (a, b) that consists of North and East steps and that lies weakly above the main diagonal.
Denote the set of (a, b)-Dyck paths by Da,b.

For a box in Ra,b with bottom-right corner coordinates (x, y), define the rank of the box to be equal to ay − bx (see Fig. 1,
left). Note that a box has positive rank if and only if it lies above the main diagonal. For a rational Dyck path π , we define the
area statistic area(π ) to be the number of boxes in Ra,b with positive ranks that are below π .

Denote the set of ranks of all the area boxes of π as α(π ). Note that α(π ) does not contain any multiples of a or b and it
has an (a, b)-nested property, that is,

(i ∈ α(π ), i > a) ⇒ i − a ∈ α(π ), (j ∈ α(π ), j > b) ⇒ j − b ∈ α(π ). (1)

Also note that α(π ) completely determines the Dyck path π .

Remark 6. The (a, b)-nested property of α(π ) is equivalent to the (a, b)-invariant property of the complement of α(π )
(see [8]).
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