[Discrete Mathematics](https://doi.org/10.1016/j.disc.2017.09.028) (**1111**) **I**

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Maximizing the number of *x*-colorings of 4-chromatic graphs

Aysel Erey

Department of Mathematics, University of Denver, Denver, CO 80208, United States

a r t i c l e i n f o

Article history: Received 4 December 2016 Received in revised form 26 September 2017 Accepted 27 September 2017 Available online xxxx

Keywords: x-coloring Chromatic number *k*-chromatic Chromatic polynomial *k*-connected Subdivision Theta graph

A B S T R A C T

Let $C_4(n)$ be the family of all connected 4-chromatic graphs of order *n*. Given an integer $x > 4$, we consider the problem of finding the maximum number of *x*-colorings of a graph in $C_4(n)$. It was conjectured that the maximum number of *x*-colorings is equal to $(x)_{\downarrow 4}(x-1)^{n-4}$ and the extremal graphs are those which have clique number 4 and size $n + 2$.

In this article, we reduce this problem to a *finite* family of graphs. We show that there exists a finite family $\mathcal F$ of connected 4-chromatic graphs such that if the number of *x*-colorings of every graph *G* in F is less than $(x)_{\downarrow4}(x-1)^{|V(\tilde{G})|-4}$ then the conjecture holds to be true.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years problems of maximizing the number of colorings over various families of graphs have received a considerable amount of attention in the literature, see, for example, [\[1](#page--1-0)[,4–](#page--1-1)[7](#page--1-2)[,9](#page--1-3)[,10,](#page--1-4)[12](#page--1-5)[,16\]](#page--1-6). A natural graph family to look at is the family of connected graphs with fixed chromatic number and fixed order. Let $\mathcal{C}_k(n)$ be the family of all connected *k*-chromatic graphs of order *n*. What is the maximum number of *k*-colorings among all graphs in C*k*(*n*)? Or more generally, for an integer $x \ge k$, what is the maximum number of *x*-colorings of a graph in $\mathcal{C}_k(n)$ and what are the extremal graphs? The answer to this question depends on the chromatic number k . When $k \leq 3$, the answer to this question is known and when $k \geq 4$ the problem is wide open. It is well known that for $k = 2$ and $x \geq 2$, the maximum number of *x*-colorings of a graph in $C_2(n)$ is equal to $x(x-1)^{n-1}$, and the extremal graphs are trees when $x\geq 3$ [\[4\]](#page--1-1). For $k=3$, Tomescu [\[14\]](#page--1-7) settled the problem by showing the following:

Theorem 1.1 ($[14$, Corollary 1]). If G is a graph in $C_3(n)$ then

$$
\pi(G, x) \le (x - 1)^n - (x - 1) \text{ for odd } n
$$

and

$$
\pi(G, x) \le (x - 1)^n - (x - 1)^2
$$
 for even n

for every integer x ≥ 3*. Furthermore, the unique extremal graph is the odd cycle Cⁿ when n is odd and odd cycle with a vertex of degree 1 attached to the cycle (denoted C* $_{n-1}^1$ *) when n is even.*

E-mail address: [aysel.erey@du.edu.](mailto:aysel.erey@du.edu)

<https://doi.org/10.1016/j.disc.2017.09.028> 0012-365X/© 2017 Elsevier B.V. All rights reserved.

2 *A. Erey / Discrete Mathematics () –*

Fig. 1. The graphs in the family $C_4^*(7)$.

Let $c_k^*(n)$ be the set of all graphs in $c_k(n)$ which have clique number k and size $\binom{k}{2}+n-k$ (see [Fig.](#page-1-0) [1\)](#page-1-0). It is easy to see that if $G \in \mathcal{C}_k^*(n)$ then $\pi(G, x) = (x)_{\downarrow k} (x - 1)^{n-k}$ where $(x)_{\downarrow k}$ is the kth falling factorial $x(x - 1)(x - 2) \cdots (x - k + 1)$. Tomescu [\[13\]](#page--1-8) conjectured that when *k* ≥ 4, the maximum number of *k*-colorings of a graph in ^C*k*(*n*) is equal to *k*!(*k* − 1)*ⁿ*−*^k* and extremal graphs belong to $e_k^*(n)$.

Conjecture 1.2 ($[13]$). If $G \in \mathcal{C}_k(n)$ where $k \geq 4$ then

$$
\pi(G, k) \leq k! (k-1)^{n-k}
$$

and extremal graphs belong to $C_k^*(n)$.

The conjecture above was later extended to all *x*-colorings with $x > 4$.

Conjecture 1.3 ([\[4,](#page--1-1) p. 315]). Let G be a graph in $C_k(n)$ where $k > 4$. Then for every $x \in \mathbb{N}$ with $x > k$

$$
\pi(G, x) \leq (x)_{\downarrow k} (x - 1)^{n-k}.
$$

Moreover, the equality holds if and only if G belongs to $e_k^*(n)$.

Several authors have studied [Conjecture](#page-1-1) [1.3.](#page-1-1) In [\[14\]](#page--1-7), Conjecture [1.3](#page-1-1) was proven for $k = 4$ under the additional condition that graphs are planar:

Theorem 1.4 ($[14$, Theorem 3]). If G is a planar graph in $C_4(n)$ then

$$
\pi(G,x)\leq(x)_{\downarrow 4}(x-1)^{n-4}
$$

for every integer $x \ge 4$ and furthermore equality holds if and only if G belongs to $C^*_4(n)$.

Also, in [\[1,](#page--1-0) Theorem 2.5] [Conjecture](#page-1-1) [1.3](#page-1-1) was proven for every $k \ge 4$, provided that $x \ge n - 2 + \left(\binom{n}{2} - \binom{k}{2} - n + k\right)^2$, and in [\[7,](#page--1-2) Theorem 2.1] it was proven for every $k \geq 4$ under the additional condition that the independence number of the graph is at most 2. In this article, our main result is [Theorem](#page-1-2) [1.5](#page-1-2) which reduces [Conjecture](#page-1-1) [1.3](#page-1-1) (for $k = 4$) to a *finite* family of 4-chromatic graphs.

Theorem 1.5. *There exists a finite family* F *of* 3*-connected nonplanar* 4*-chromatic graphs such that if every graph G in* F *satisfies* $\pi(G,x) < (x)_{\downarrow 4}(x-1)^{|V(G)|-4}$ for all $x \in \mathbb{N}$ with $x \geq 4$, then [Conjecture](#page-1-1) [1.3](#page-1-1) holds to be true.

Note that our result does not say anything about the number of graphs in this finite family. Our proof relies on [Theorem 3.4,](#page--1-9) so it might be helpful to analyze its proof in order to determine how big this finite family is.

2. Terminology and background

Let *V*(*G*) and *E*(*G*) be the vertex set and edge set of a (finite, undirected) graph *G*, respectively. The *order* of *G* is |*V*(*G*)| and the *size* of *G* is $|E(G)|$. For a nonnegative integer *x*, a (proper) *x*-coloring of *G* is a function $f : V(G) \rightarrow \{1, \ldots, x\}$ such that $f(u) \neq f(v)$ for every $uv \in E(G)$. The *chromatic number* $\chi(G)$ is smallest x for which *G* has an x-coloring and *G* is called *k*-chromatic if $\chi(G) = k$. Let $\pi(G, x)$ denote the *chromatic polynomial of G*. For nonnegative integers *x*, the polynomial $\pi(G, x)$ counts the number of *x*-colorings of *G*.

Let *G* + *e* be the graph obtained from *G* by adding an edge *e* and *G*/*e* be the graph formed from *G* by *contracting* edge *e* (or non-edge *e* if $e \notin E(G)$). For $e \notin E(G)$, observe that

$$
\chi(G) = \min\{\chi(G + e), \chi(G/e)\}\
$$

Please cite this article in press as: A. Erey, Maximizing the number of *x-*colorings of 4-chromatic graphs, Discrete Mathematics (2017),
https://doi.org/10.1016/j.disc.2017.09.028.

Download English Version:

<https://daneshyari.com/en/article/8903024>

Download Persian Version:

<https://daneshyari.com/article/8903024>

[Daneshyari.com](https://daneshyari.com)