Pentavalent symmetric graphs admitting transitive non-abelian characteristically simple groups

Jia-Li Du, Yan-Quan Feng*
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

ARTICLE INFO

Article history:

Received 19 August 2017
Received in revised form 13 December 2017
Accepted 15 December 2017
Available online 30 January 2018

Keywords:

Vertex-transitive graph
Symmetric graph
Cayley graph
Regular permutation group
Simple group

Abstract

Let Γ be a graph and let G be a group of automorphisms of Γ. The graph Γ is called G-normal if G is normal in the automorphism group of Γ. Let T be a finite non-abelian simple group and let $G=T^{l}$ with $l \geq 1$. In this paper we prove that if every connected pentavalent symmetric T-vertex-transitive graph is T-normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-normal. This result, among others, implies that every connected pentavalent symmetric G-vertex-transitive graph is G-normal except T is one of 57 simple groups. Furthermore, every connected pentavalent symmetric G-regular graph is G-normal except T is one of 20 simple groups, and every connected pentavalent G-symmetric graph is G-normal except T is one of 17 simple groups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all groups and graphs are finite, and all graphs are simple and undirected. Denote by $\mathbb{Z}_{n}, D_{n}, A_{n}$ and S_{n} the cyclic group of order n, the dihedral group of order $2 n$, the alternating group and the symmetric group of degree n, respectively. Let G be a permutation group on a set Ω and let $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_{\alpha}=1$ for every $\alpha \in \Omega$, and regular if it is semiregular and transitive. For a graph Γ, we denote its vertex set and automorphism group by $V(\Gamma)$ and Aut (Γ), respectively. The graph Γ is said to be G-vertex-transitive or G-regular for $G \leq \operatorname{Aut}(\Gamma)$ if G acts transitively or regularly on $V(\Gamma)$ respectively, and G-symmetric if G acts transitively on the arc set of Γ (an arc is an ordered pair of adjacent vertices). In particular, Γ is vertex-transitive or symmetric if it is Aut (Γ)-vertex-transitive or $\operatorname{Aut}(\Gamma)$-symmetric, respectively. A graph Γ is said to be G-normal for $G \leq \operatorname{Aut}(\Gamma)$ if G is normal in $\operatorname{Aut}(\Gamma)$.

For a non-abelian simple group T, T-vertex-transitive graphs have received wide attentions, specially for the two extreme cases: T-symmetric graphs and T-regular graphs. It was shown in [2] that a connected pentavalent symmetric T-vertextransitive graph Γ is either T-normal or Aut (Γ) contains a non-abelian simple normal subgroup L such that $T \leq L$ and (T, L) is one of 58 possible pairs of non-abelian simple groups.

A T-regular graph is also called a Cayley graph over T, and the Cayley graph is called normal if it is T-normal. Investigation of Cayley graphs over a non-abelian simple group is currently a hot topic in algebraic graph theory. One of the most remarkable achievements is the complete classification of connected trivalent symmetric non-normal Cayley graphs over non-abelian simple groups. This work was began in 1996 by Li [12], and he proved that a connected trivalent symmetric Cayley graph Γ over a non-abelian simple group T is either normal or $T=A_{5}, A_{7}, \operatorname{PSL}(2,11), M_{11}, A_{11}, A_{15}, M_{23}, A_{23}$ or A_{47}. In 2005 , Xu et al. [16] proved that either Γ is normal or $T=A_{47}$, and two years later, Xu et al. [17] further showed that if $T=A_{47}$ and Γ is not normal, then Γ must be 5-arc-transitive and up to isomorphism there are exactly two such graphs. Du et al. [2]

[^0]showed that a connected pentavalent symmetric Cayley graph Γ over T is either normal, or Aut (Γ) contains a non-abelian simple normal subgroup L such that $T \leq L$ and (T, L) is one of 13 possible pairs of non-abelian simple groups.

For T-symmetric graphs, Fang and Praeger [4,5] classified such graphs when T is a Suzuki or Ree simple group acting transitively on the set of 2-arcs of the graphs. For a connected cubic T-symmetric graph Γ, it was proved by Li [12] that either Γ is T-normal or $(T, \operatorname{Aut}(\Gamma))=\left(A_{7}, A_{8}\right),\left(A_{7}, S_{8}\right),\left(A_{7}, 2 . A_{8}\right),\left(A_{15}, A_{16}\right)$ or $(G L(4,2), \operatorname{AGL}(4,2))$. Fang et al. [3] proved that none of the above five pairs can happen, that is, T is always normal in $\operatorname{Aut}(\Gamma)$. Du et al. [2] showed that a connected pentavalent T-symmetric graph Γ is either T-normal or Aut (Γ) contains a non-abelian simple normal subgroup L such that $T \leq L$ and (T, L) is one of 17 possible pairs of non-abelian simple groups.

Let G be the characteristically simple group T^{l} with $l \geq 1$. In this paper, we extend the above results on connected pentavalent T-vertex-transitive graphs to G-vertex-transitive graphs.

Theorem 1.1. Let T be a non-abelian simple group and let $G=T^{l}$ with $l \geq 1$. Assume that every connected pentavalent symmetric T-vertex-transitive graph is T-normal. Then every connected pentavalent symmetric G-vertex-transitive graph is G-normal.

In 2011, Hua et al. [10] proved that if every connected cubic symmetric T-vertex-transitive graph is T-normal, then every connected cubic symmetric G-vertex-transitive graph is G-normal. By Theorem 1.1 and [2, Theorem 1.1], we have the following corollaries.

Corollary 1.2. Let T be a non-abelian simple group and let $G=T^{l}$ with $l \geq 1$. Then every connected pentavalent symmetric G-vertex-transitive graph is G-normal except for $T=\operatorname{PSL}(2,8), \Omega_{8}^{-}(2)$ or A_{n-1} with $n \geq 6$ and $n \mid 2^{9} \cdot 3^{2} \cdot 5$.

Corollary 1.3. Let T be a non-abelian simple group and let $G=T^{l}$ with $l \geq 1$. Then every connected pentavalent G-symmetric graph is G-normal except for $T=A_{n-1}$ with $n=2 \cdot 3,2^{2} \cdot 3,2^{4}, 2^{3} \cdot 3,2^{5}, 2^{2} \cdot 3^{2}, 2^{4} \cdot 3,2^{3} \cdot 3^{2}, 2^{5} \cdot 3,2^{4} \cdot 3^{2}, 2^{6} \cdot 3,2^{5} \cdot 3^{2}, 2^{7} \cdot 3$, $2^{6} \cdot 3^{2}, 2^{7} \cdot 3^{2}, 2^{8} \cdot 3^{2}$ or $2^{9} \cdot 3^{2}$.

Corollary 1.4. Let T be a non-abelian simple group and let $G=T^{l}$ with $l \geq 1$. Then every connected pentavalent symmetric G-regular graph is G-normal except for $T=\operatorname{PSL}(2,8)$, $\Omega_{8}^{-}(2)$ or A_{n-1} with $n=2 \cdot 3,2^{3}, 3^{2}, 2 \cdot 5,2^{2} \cdot 3,2^{2} \cdot 5,2^{3} \cdot 3,2^{3} \cdot 5$, $2^{2} \cdot 3 \cdot 5,2^{4} \cdot 5,2^{3} \cdot 3 \cdot 5,2^{4} \cdot 3^{2} \cdot 5,2^{6} \cdot 3 \cdot 5,2^{5} \cdot 3^{2} \cdot 5,2^{7} \cdot 3 \cdot 5,2^{6} \cdot 3^{2} \cdot 5,2^{7} \cdot 3^{2} \cdot 5$ or $2^{9} \cdot 3^{2} \cdot 5$.

2. Preliminaries

In this section, we describe some preliminary results which will be used later. The first one is the vertex stabilizers of connected pentavalent symmetric graphs. By [7, Theorem 1.1], we have the following proposition.

Proposition 2.1. Let Γ be a connected pentavalent G-symmetric graph with $v \in V(\Gamma)$. Then $G_{v} \cong \mathbb{Z}_{5}, D_{5}, D_{10}, F_{20}, F_{20} \times \mathbb{Z}_{2}$, $F_{20} \times \mathbb{Z}_{4}, A_{5}, S_{5}, A_{4} \times A_{5}, S_{4} \times S_{5},\left(A_{4} \times A_{5}\right) \rtimes \mathbb{Z}_{2}, \operatorname{ASL}(2,4), \operatorname{AGL}(2,4), A \Sigma L(2,4), A \Gamma L(2,4)$ or $\mathbb{Z}_{2}^{6} \rtimes \Gamma L(2,4)$, where F_{20} is the Frobenius group of order $20, A_{4} \rtimes \mathbb{Z}_{2}=S_{4}$ and $A_{5} \rtimes \mathbb{Z}_{2}=S_{5}$. In particular, $\left|G_{v}\right|=5,2 \cdot 5,2^{2} \cdot 5,2^{2} \cdot 5,2^{3} \cdot 5,2^{4} \cdot 5,2^{2} \cdot 3 \cdot 5$, $2^{3} \cdot 3 \cdot 5,2^{4} \cdot 3^{2} \cdot 5,2^{6} \cdot 3^{2} \cdot 5,2^{5} \cdot 3^{2} \cdot 5,2^{6} \cdot 3 \cdot 5,2^{6} \cdot 3^{2} \cdot 5,2^{7} \cdot 3 \cdot 5,2^{7} \cdot 3^{2} \cdot 5$ or $2^{9} \cdot 3^{2} \cdot 5 \cdot 5$, respectively.

Connected pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups were classified in [2].
Proposition 2.2 ([2, Theorem 1.1]). Let T be a non-abelian simple group and Γ a connected pentavalent symmetric T-vertextransitive graph. Then either $T \unlhd \operatorname{Aut}(\Gamma)$, or $T=\Omega_{8}^{-}(2), \operatorname{PSL}(2,8)$ or A_{n-1} with $n \geq 6$ and $n \mid 2^{9} \cdot 3^{2} \cdot 5$.

The following is straightforward (also see the short proof of [2, Lemma 3.2]).
Proposition 2.3. Let Γ be a connected pentavalent symmetric G-vertex-transitive graph with $v \in V(\Gamma)$ and let $A=A u t(\Gamma)$. If $H \leq A$ and $G H \leq A$, then $|H| /|H \cap G|=\left|(G H)_{v}\right| /\left|G_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$, and if Γ is further G-symmetric then $|H| /|H \cap G| \mid 2^{9} \cdot 3^{2}$.

The following proposition follows the classification of three-factor simple groups.
Proposition 2.4 ([11, Theorem I]). Let G be a non-abelian simple $\{2,3,5\}$-group. Then $G=A_{5}, A_{6}$ or $\operatorname{PSU}(4,2)$.
By Guralnick [8, Theorem 1], we have the following proposition.
Proposition 2.5. Let G be a non-abelian simple group with a subgroup H such that $|G: H|=p^{a}$ with p a prime and $a \geq 1$. Then
(1) $G=A_{n}$ and $H=A_{n-1}$ with $n=p^{a}$;
(2) $G=\operatorname{PSL}(2,11)$ and $H=A_{5}$ with $|G: H|=11$;
(3) $G=M_{23}$ and $H=M_{22}$ with $|G: H|=23$, or $G=M_{11}$ and $H=M_{10}$ with $|G: H|=11$;
(4) $G=P S U(4,2) \cong P S p(4,3)$ and H is the parabolic subgroup of index 27 ;
(5) $G=\operatorname{PSL}(n, q)$ and H is the stabilizer of a line or hyperplane with $|G: H|=\left(q^{n}-1\right) /(q-1)=p^{a}$.

By [13, Theorem 1] and Proposition 2.5, we have the following proposition.

https://daneshyari.com/en/article/8903025

Download Persian Version:

https://daneshyari.com/article/8903025

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: JiaLiDu@bjtu.edu.cn (J.-L. Du), yqfeng@bjtu.edu.cn (Y.-Q. Feng).

