Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Jia-Li Du, Yan-Quan Feng*

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

ARTICLE INFO

Article history: Received 19 August 2017 Received in revised form 13 December 2017 Accepted 15 December 2017 Available online 30 January 2018

Keywords: Vertex-transitive graph Symmetric graph Cayley graph Regular permutation group Simple group

ABSTRACT

Let Γ be a graph and let G be a group of automorphisms of Γ . The graph Γ is called G-normal if G is normal in the automorphism group of Γ . Let T be a finite non-abelian simple group and let $G = T^l$ with $l \ge 1$. In this paper we prove that if every connected pentavalent symmetric T-vertex-transitive graph is T-normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-normal. This result, among others, implies that every connected pentavalent symmetric G-vertex-transitive G-vertex-transitive graph is G-normal except T is one of 57 simple groups. Furthermore, every connected pentavalent symmetric G-regular graph is G-normal except T is one of 20 simple groups, and every connected pentavalent G-symmetric graph is G-normal except T is one of 17 simple groups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all groups and graphs are finite, and all graphs are simple and undirected. Denote by \mathbb{Z}_n , D_n , A_n and S_n the cyclic group of order n, the dihedral group of order 2n, the alternating group and the symmetric group of degree n, respectively. Let G be a permutation group on a set Ω and let $\alpha \in \Omega$. Denote by G_α the stabilizer of α in G, that is, the subgroup of G fixing the point α . We say that G is *semiregular* on Ω if $G_\alpha = 1$ for every $\alpha \in \Omega$, and *regular* if it is semiregular and transitive. For a graph Γ , we denote its vertex set and automorphism group by $V(\Gamma)$ and Aut(Γ), respectively. The graph Γ is said to be *G*-vertex-transitive or *G*-regular for $G \leq Aut(\Gamma)$ if G acts transitively or regularly on $V(\Gamma)$ respectively, and *G*-symmetric if G acts transitively on the arc set of Γ (an arc is an ordered pair of adjacent vertices). In particular, Γ is vertex-transitive or symmetric if it is Aut(Γ)-vertex-transitive or Aut(Γ)-symmetric, respectively. A graph Γ is said to be *G*-normal for $G \leq Aut(\Gamma)$ if G is normal in Aut(Γ).

For a non-abelian simple group *T*, *T*-vertex-transitive graphs have received wide attentions, specially for the two extreme cases: *T*-symmetric graphs and *T*-regular graphs. It was shown in [2] that a connected pentavalent symmetric *T*-vertex-transitive graph Γ is either *T*-normal or Aut(Γ) contains a non-abelian simple normal subgroup *L* such that $T \leq L$ and (T, L) is one of 58 possible pairs of non-abelian simple groups.

A *T*-regular graph is also called a *Cayley graph* over *T*, and the Cayley graph is called *normal* if it is *T*-normal. Investigation of Cayley graphs over a non-abelian simple group is currently a hot topic in algebraic graph theory. One of the most remarkable achievements is the complete classification of connected trivalent symmetric non-normal Cayley graphs over non-abelian simple groups. This work was began in 1996 by Li [12], and he proved that a connected trivalent symmetric Cayley graph Γ over a non-abelian simple group *T* is either normal or $T = A_5, A_7, PSL(2, 11), M_{11}, A_{15}, M_{23}, A_{23}$ or A_{47} . In 2005, Xu et al. [16] proved that either Γ is normal or $T = A_{47}$, and two years later, Xu et al. [17] further showed that if $T = A_{47}$ and Γ is normal, then Γ must be 5-arc-transitive and up to isomorphism there are exactly two such graphs. Du et al. [2]

* Corresponding author. E-mail addresses: jiaLiDu@bjtu.edu.cn (J.-L. Du), yqfeng@bjtu.edu.cn (Y.-Q. Feng).

https://doi.org/10.1016/j.disc.2017.12.011 0012-365X/© 2017 Elsevier B.V. All rights reserved.

showed that a connected pentavalent symmetric Cayley graph Γ over T is either normal, or Aut(Γ) contains a non-abelian simple normal subgroup L such that T < L and (T, L) is one of 13 possible pairs of non-abelian simple groups.

For *T*-symmetric graphs, Fang and Praeger [4,5] classified such graphs when *T* is a Suzuki or Ree simple group acting transitively on the set of 2-arcs of the graphs. For a connected cubic *T*-symmetric graph Γ , it was proved by Li [12] that either Γ is *T*-normal or $(T, \operatorname{Aut}(\Gamma)) = (A_7, A_8), (A_7, S_8), (A_7, 2.A_8), (A_{15}, A_{16})$ or $(\operatorname{GL}(4, 2), \operatorname{AGL}(4, 2))$. Fang et al. [3] proved that none of the above five pairs can happen, that is, *T* is always normal in $\operatorname{Aut}(\Gamma)$. Du et al. [2] showed that a connected pentavalent *T*-symmetric graph Γ is either *T*-normal or $\operatorname{Aut}(\Gamma)$ contains a non-abelian simple normal subgroup *L* such that T < L and (T, L) is one of 17 possible pairs of non-abelian simple groups.

Let *G* be the characteristically simple group T^l with $l \ge 1$. In this paper, we extend the above results on connected pentavalent *T*-vertex-transitive graphs to *G*-vertex-transitive graphs.

Theorem 1.1. Let *T* be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Assume that every connected pentavalent symmetric *T*-vertex-transitive graph is *T*-normal. Then every connected pentavalent symmetric *G*-vertex-transitive graph is *G*-normal.

In 2011, Hua et al. [10] proved that if every connected cubic symmetric *T*-vertex-transitive graph is *T*-normal, then every connected cubic symmetric *G*-vertex-transitive graph is *G*-normal. By Theorem 1.1 and [2, Theorem 1.1], we have the following corollaries.

Corollary 1.2. Let *T* be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Then every connected pentavalent symmetric *G*-vertex-transitive graph is *G*-normal except for T = PSL(2, 8), $\Omega_8^-(2)$ or A_{n-1} with $n \ge 6$ and $n|2^9 \cdot 3^2 \cdot 5$.

Corollary 1.3. Let T be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Then every connected pentavalent G-symmetric graph is G-normal except for $T = A_{n-1}$ with $n = 2 \cdot 3$, $2^2 \cdot 3$, 2^4 , $2^3 \cdot 3$, 2^5 , $2^2 \cdot 3^2$, $2^4 \cdot 3$, $2^3 \cdot 3^2$, $2^5 \cdot 3$, $2^4 \cdot 3^2$, $2^6 \cdot 3$, $2^5 \cdot 3^2$, $2^7 \cdot 3$, $2^6 \cdot 3^2$, $2^7 \cdot 3^2$, $2^8 \cdot 3^2$ or $2^9 \cdot 3^2$.

Corollary 1.4. Let *T* be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Then every connected pentavalent symmetric *G*-regular graph is *G*-normal except for T = PSL(2, 8), $\Omega_8^-(2)$ or A_{n-1} with $n = 2 \cdot 3, 2^3, 3^2, 2 \cdot 5, 2^2 \cdot 3, 2^2 \cdot 5, 2^3 \cdot 3, 2^3 \cdot 5, 2^2 \cdot 3, 5, 2^4 \cdot 5, 2^3 \cdot 3, 5, 2^4 \cdot 3^2 \cdot 5, 2^5 \cdot 3^2 \cdot 5, 2^7 \cdot 3 \cdot 5, 2^6 \cdot 3^2 \cdot 5, 2^7 \cdot 3^2 \cdot 5 \text{ or } 2^9 \cdot 3^2 \cdot 5.$

2. Preliminaries

In this section, we describe some preliminary results which will be used later. The first one is the vertex stabilizers of connected pentavalent symmetric graphs. By [7, Theorem 1.1], we have the following proposition.

Proposition 2.1. Let Γ be a connected pentavalent *G*-symmetric graph with $v \in V(\Gamma)$. Then $G_v \cong \mathbb{Z}_5$, D_5 , D_{10} , $F_{20} \times \mathbb{Z}_2$, $F_{20} \times \mathbb{Z}_4$, A_5 , S_5 , $A_4 \times A_5$, $S_4 \times S_5$, $(A_4 \times A_5) \rtimes \mathbb{Z}_2$, ASL(2, 4), AGL(2, 4), $A\Sigma L(2, 4)$, $A\Gamma L(2, 4)$ or $\mathbb{Z}_2^6 \rtimes \Gamma L(2, 4)$, where F_{20} is the Frobenius group of order 20, $A_4 \rtimes \mathbb{Z}_2 = S_4$ and $A_5 \rtimes \mathbb{Z}_2 = S_5$. In particular, $|G_v| = 5$, $2 \cdot 5$, $2^2 \cdot 5$, $2^3 \cdot 5$, $2^4 \cdot 5$, $2^5 \cdot 3^2 \cdot 5$, $2^6 \cdot 3 \cdot 5$, $2^6 \cdot 3 \cdot 5$, $2^6 \cdot 3^2 \cdot 5$, $2^7 \cdot 3 \cdot 5$, $2^7 \cdot 3^2 \cdot 5$ or $2^9 \cdot 3^2 \cdot 5 \cdot 5$, respectively.

Connected pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups were classified in [2].

Proposition 2.2 ([2, Theorem 1.1]). Let T be a non-abelian simple group and Γ a connected pentavalent symmetric T-vertex-transitive graph. Then either $T \leq Aut(\Gamma)$, or $T = \Omega_8^-(2)$, PSL(2, 8) or A_{n-1} with $n \geq 6$ and $n \mid 2^9 \cdot 3^2 \cdot 5$.

The following is straightforward (also see the short proof of [2, Lemma 3.2]).

Proposition 2.3. Let Γ be a connected pentavalent symmetric *G*-vertex-transitive graph with $v \in V(\Gamma)$ and let $A = Aut(\Gamma)$. If $H \leq A$ and $GH \leq A$, then $|H|/|H \cap G| = |(GH)_v|/|G_v||2^9 \cdot 3^2 \cdot 5$, and if Γ is further *G*-symmetric then $|H|/|H \cap G||2^9 \cdot 3^2$.

The following proposition follows the classification of three-factor simple groups.

Proposition 2.4 ([11, Theorem I]). Let G be a non-abelian simple $\{2, 3, 5\}$ -group. Then $G = A_5$, A_6 or PSU(4, 2).

By Guralnick [8, Theorem 1], we have the following proposition.

Proposition 2.5. Let G be a non-abelian simple group with a subgroup H such that $|G:H| = p^a$ with p a prime and $a \ge 1$. Then

- (1) $G = A_n$ and $H = A_{n-1}$ with $n = p^a$;
- (2) G = PSL(2, 11) and $H = A_5$ with |G:H| = 11;
- (3) $G = M_{23}$ and $H = M_{22}$ with |G:H| = 23, or $G = M_{11}$ and $H = M_{10}$ with |G:H| = 11;
- (4) $G = PSU(4, 2) \cong PSp(4, 3)$ and H is the parabolic subgroup of index 27;
- (5) G = PSL(n, q) and H is the stabilizer of a line or hyperplane with $|G:H| = (q^n 1)/(q 1) = p^a$.

By [13, Theorem 1] and Proposition 2.5, we have the following proposition.

Download English Version:

https://daneshyari.com/en/article/8903025

Download Persian Version:

https://daneshyari.com/article/8903025

Daneshyari.com