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a b s t r a c t

Recently, Mubayi and Wang showed that for r ≥ 4 and ℓ ≥ 3, the number of n-vertex
r-graphs that do not contain any loose cycle of length ℓ is at most 2O(nr−1(log n)(r−3)/(r−2)). We
improve this bound to 2O(nr−1 log log n).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let two graphs G and H be given. The graph G is called H-free if it does not contain any copy of H as a subgraph. One of
the central problems in graph theory is to determine the extremal and typical properties of H-free graphs on n vertices. For
example, one of the first influential results of this type is the Erdős–Kleitman–Rothschild theorem [4], which, for instance,
implies that the number of triangle-free graphs with vertex set [n] = {1, . . . , n} is 2n2/4+o(n2). This has inspired a great
deal of work on counting the number of H-free graphs. For an overview of this line of research, the reader is referred to,
e.g., [3,10]. For a recent, exciting result in the area, see [8], which also contains a good discussion of the general area, with
several pointers to the literature. These problems are closely related to the so-called Turán problem, which asks to determine
the maximum possible number of edges in an H-free graph. More precisely, given an r-uniform hypergraph (or r-graph) H ,
the Turán number exr (n,H) is the maximum number of edges in an r-graph G on n vertices that is H-free. Let Forbr (n,H)
be the set of all H-free r-graphs with vertex set [n]. Noting that the subgraphs of an H-free r-graph G are also H-free, we
trivially see that |Forbr (n,H)| ⩾ 2exr (n,H), by considering an H-free r-graph G on [n]with themaximum number of edges and
all its subgraphs. On the other hand for, fixed r and H ,

|Forbr (n,H)| ⩽
∑

1⩽i⩽exr (n,H)

((n
r

)
i

)
= 2O(exr (n,H) log n). (1)

Hence the above simple bounds differ by a factor of log n in the exponent, and all existing results support that this log n
factor should be unnecessary, i.e., the trivial lower bound should be closer to the truth.

There are very few results in the case r > 2 and exr (n,H) = o(nr ). The only known case is when H consists of two edges
sharing t vertices [1,5]. Very recently, Mubayi and Wang [9] studied |Forbr (n,H)| when H is a loose cycle. Given ℓ ⩾ 3, an
r-uniform loose cycle C r

ℓ is an ℓ(r − 1)-vertex r-graph whose vertices can be ordered cyclically in such a way that the edges
are sets of consecutive r vertices and every two consecutive edges share exactly one vertex.When r is clear from the context,
we simply write Cℓ.
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Theorem 1 ([9]). For every ℓ ⩾ 3 and r ⩾ 4, there exists c = c(r, ℓ) such that

|Forbr (n, Cℓ)| < 2cnr−1(log n)(r−3)/(r−2)
(2)

for all n. For ℓ ⩾ 4 even, there exists c = c(ℓ) such that |Forb3(n, Cℓ)| < 2cn2 for all n.

Since exr (n, Cℓ) = Ω(nr−1) for all r ⩾ 3 [6,7], Theorem 1 implies that |Forb3(n, Cℓ)| = 2Θ(n2) for even ℓ ⩾ 4. Mubayi
and Wang also conjecture that similar results should hold for r = 3 and all ℓ ⩾ 3 odd and for all r ⩾ 4 and ℓ ⩾ 3,
i.e., |Forbr (n, Cℓ)| = 2Θ(nr−1) for all such r and ℓ. In this note we give the following improvement of Theorem 1 for r ⩾ 4.

Theorem 2. For every ℓ ⩾ 3 and r ⩾ 4, we have

|Forbr (n, Cℓ)| < 22r2ℓnr−1 log log n (3)

for all sufficiently large n.

In what follows, logarithms have base 2.

2. Edge-colored r-graphs

Let r ⩾ 2 be an integer. An r-uniform hypergraph G (or r-graph) on a vertex set X is a collection of r-element subsets of X ,
called hyperedges or simply edges. The vertex set X of G is denoted V (G). We write e(G) for the number of edges in G. An
r-partite r-graph G is an r-graph together with a vertex partition V (G) = V1 ∪ · · · ∪ Vr , such that every edge of G contains
exactly one vertex from each Vi (i ∈ [n]). If all such edges are present in G, thenwe say that G is complete. We call an r-partite
r-graph balanced if all parts in its vertex partition have the same size. Let Kr (s) denote the complete r-partite r-graph with s
vertices in each vertex class.

We now introduce some key definitions from [9], which are also essential for us. Given an (r−1)-graphGwith V (G) ⊆ [n],
a coloring function for G is a function χ : G → [n] such that χ (e) = ze ∈ [n] ∖ e for every e ∈ G. We call ze the color of e. The
pair (G, χ ) is an edge-colored (r − 1)-graph.

Given G, each edge-coloring χ of G gives an r-graph Gχ
=

{
e ∪ {ze} : e ∈ G

}
, called the extension of G by χ . When there

is only one coloring that has been defined, we write G∗ for Gχ . Clearly any subgraph G′
⊆ G also admits an extension by χ ,

namely, (G′)χ =
{
e ∪ {ze} : e ∈ G′

}
⊆ G∗. If G′

⊆ G and χ↾G′ is one-to-one and ze ̸∈ V (G′) for all e ∈ G′, then G′ is called
strongly rainbow colored. We state the following simple remark explicitly for later reference.

Remark 3. A strongly rainbow colored copy of C r−1
ℓ in G′ gives rise to a copy of C r

ℓ in G∗.

The following definition is crucial.

Definition 4 (gr (n, ℓ), [9]). For r ⩾ 4 and ℓ ⩾ 3, let gr (n, ℓ) be the number of edge-colored (r − 1)-graphs Gwith V (G) ⊆ [n]
such that the extension G∗ is C r

ℓ -free.

The function gr (n, ℓ) above counts the number of pairs (G, χ ) with Gχ
∈ Forbr (n, C r

ℓ ). Mubayi and Wang [9] proved
that gr (n, ℓ) is non-negligible in comparison with |Forbr (n, Cℓ)| and were thus able to deduce Theorem 1. The following
estimate on gr (n, ℓ) is proved in [9].

Lemma 5 ([9], Lemma 8). For every r ⩾ 4 and ℓ ⩾ 3 there is c = c(r, ℓ) such that for all large enough n we have log gr (n, ℓ) ⩽
cnr−1(log n)(r−3)/(r−2).

We improve Lemma 5 as follows.

Lemma 6. For every r ⩾ 4 and ℓ ⩾ 3 we have

log gr (n, ℓ) ⩽ 2rnr−1 log log n (4)

for all large enough n.

Theorem 2 can be derived from Lemma 6 in the sameway that Theorem 1 is derived from Lemma 5 in [9]. It thus remains
to prove Lemma 6.

3. Proof of Lemma 6

To bound gr (n, ℓ), we should consider all possible (r −1)-graphs G and their ‘valid’ edge-colorings. Let an (r −1)-graph G
be fixed. The authors of [9] consider decompositions of G into balanced complete (r − 1)-partite (r − 1)-graphs Gi, and
obtain good estimates on the number of edge-colorings of each Gi. In our proof of Lemma 6, we also decompose G into
balanced (r−1)-partite (r−1)-graphsGi, butwith eachGi not necessarily complete.We get our improvement because certain
quantitative aspects of our decomposition are better, and similar estimates can be shown for the number of edge-colorings
of each Gi.
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