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1. Introduction

Let two graphs G and H be given. The graph G is called H-free if it does not contain any copy of H as a subgraph. One of
the central problems in graph theory is to determine the extremal and typical properties of H-free graphs on n vertices. For
example, one of the first influential results of this type is the Erdés-Kleitman-Rothschild theorem [4], which, for instance,
implies that the number of triangle-free graphs with vertex set [n] = {1,...,n}is 2m*/4+n?) This has inspired a great
deal of work on counting the number of H-free graphs. For an overview of this line of research, the reader is referred to,
e.g., [3,10]. For a recent, exciting result in the area, see [8], which also contains a good discussion of the general area, with
several pointers to the literature. These problems are closely related to the so-called Turdn problem, which asks to determine
the maximum possible number of edges in an H-free graph. More precisely, given an r-uniform hypergraph (or r-graph) H,
the Turdn number ex.(n, H) is the maximum number of edges in an r-graph G on n vertices that is H-free. Let Forb,(n, H)
be the set of all H-free r-graphs with vertex set [n]. Noting that the subgraphs of an H-free r-graph G are also H-free, we
trivially see that |Forb,(n, H)| > 28" by considering an H-free r-graph G on [n] with the maximum number of edges and
all its subgraphs. On the other hand for, fixed r and H,

n
[Forb,(n, H)| < ) ((;)>=2°<exf(“v”“°g”). (1)

1<i<exr(n,H)

Hence the above simple bounds differ by a factor of logn in the exponent, and all existing results support that this logn
factor should be unnecessary, i.e., the trivial lower bound should be closer to the truth.

There are very few results in the case r > 2 and ex,(n, H) = o(n"). The only known case is when H consists of two edges
sharing t vertices [1,5]. Very recently, Mubayi and Wang [9] studied |Forb,(n, H)| when H is a loose cycle. Given £ > 3, an
r-uniform loose cycle C; is an ¢(r — 1)-vertex r-graph whose vertices can be ordered cyclically in such a way that the edges
are sets of consecutive r vertices and every two consecutive edges share exactly one vertex. When r is clear from the context,
we simply write C,.
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Theorem 1 ([9]). Forevery £ > 3 and r > 4, there exists c = c(r, £) such that

Cnril(log n)(r—3)/(r—2)

|Forb.(n, C;)| < 2 (2)

for all n. For £ > 4 even, there exists c = c(£) such that |Forbs(n, C;)| < 2 for all n.

Since ex,(n, C;) = 2(n"~!)for allr > 3 [6,7], Theorem 1 implies that |Forbs(n, C;)| = 290) for even ¢ > 4. Mubayi
and Wang also conjecture1 that similar results should hold forr = 3 and all £ > 3 odd and forallr > 4and £ > 3,
i.e,, |[Forb,(n, C;)| = 20" for all such r and £. In this note we give the following improvement of Theorem 1 forr > 4.

Theorem 2. Forevery £ > 3 andr > 4, we have

|Forbr(n, CZ)| < 22r25nr’1 loglogn (3)
for all sufficiently large n.

In what follows, logarithms have base 2.
2. Edge-colored r-graphs

Let r > 2 be an integer. An r-uniform hypergraph G (or r-graph) on a vertex set X is a collection of r-element subsets of X,
called hyperedges or simply edges. The vertex set X of G is denoted V(G). We write e(G) for the number of edges in G. An
r-partite r-graph G is an r-graph together with a vertex partition V(G) = V; U - - - U V,, such that every edge of G contains
exactly one vertex from each V; (i € [n]). If all such edges are present in G, then we say that G is complete. We call an r-partite
r-graph balanced if all parts in its vertex partition have the same size. Let K;(s) denote the complete r-partite r-graph with s
vertices in each vertex class.

We now introduce some key definitions from [9], which are also essential for us. Given an (r — 1)-graph G with V(G) C [n],
a coloring function for G is a function x : G — [n] such that x(e) = z. € [n] \ e for every e € G. We call z, the color of e. The
pair (G, ) is an edge-colored (r — 1)-graph.

Given G, each edge-coloring x of G gives an r-graph G* = {e U{z.}:ee G}, called the extension of G by x. When there
is only one coloring that has been defined, we write G* for G*. Clearly any subgraph G’ C G also admits an extension by y,
namely, (G')* = {e Uiz} :ee G’} C G*.1f ¢ € Gand x|y is one-to-one and z, ¢ V(G') for alle € G/, then G’ is called
strongly rainbow colored. We state the following simple remark explicitly for later reference.

Remark 3. A strongly rainbow colored copy of C; ~1in G gives rise to a copy of C ; in G*.

The following definition is crucial.
Definition 4 (g.(n, £), [9]). Forr > 4and ¢ > 3, let g.(n, £) be the number of edge-colored (r — 1)-graphs G with V(G) C [n]
such that the extension G* is C;-free.

The function g;(n, £) above counts the number of pairs (G, x) with GX € Forb,(n, C}). Mubayi and Wang [9] proved
that g;(n, £) is non-negligible in comparison with |Forb,(n, C;)| and were thus able to deduce Theorem 1. The following
estimate on g;(n, £) is proved in [9].

Lemma 5 ([9], Lemma 8). Foreveryr > 4and ¢ > 3 thereis c = c(r, £) such that for all large enough n we have log g.(n, £) <
cn’~(log n)r—30r=2),

We improve Lemma 5 as follows.

Lemma 6. Foreveryr > 4and ¢ > 3 we have

logg(n, ¢) < 2rn" " 'loglogn (4)
for all large enough n.

Theorem 2 can be derived from Lemma 6 in the same way that Theorem 1 is derived from Lemma 5 in [9]. It thus remains
to prove Lemma 6.

3. Proof of Lemma 6

To bound g.(n, £), we should consider all possible (r — 1)-graphs G and their ‘valid’ edge-colorings. Let an (r — 1)-graph G
be fixed. The authors of [9] consider decompositions of G into balanced complete (r — 1)-partite (r — 1)-graphs G;, and
obtain good estimates on the number of edge-colorings of each G;. In our proof of Lemma 6, we also decompose G into
balanced (r —1)-partite (r — 1)-graphs G;, but with each G; not necessarily complete. We get our improvement because certain
quantitative aspects of our decomposition are better, and similar estimates can be shown for the number of edge-colorings
of each G;.
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