An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs

Bojan Vučković
Matematički institut SANU, Kneza Mihaila 36, 11001 Beograd, p.p. 367, Serbia

ARTICLE INFO

Article history:

Received 28 December 2016
Received in revised form 6 October 2017
Accepted 11 October 2017
Available online xxxx

Keywords:

Adjacent vertex distinguishing total coloring
Maximum degree

Abstract

An adjacent vertex distinguishing total k-coloring of a graph G is a proper total k-coloring of G such that any pair of adjacent vertices have different sets of colors. The minimum number k needed for such a total coloring of G is denoted by $\chi_{a}^{\prime \prime}(G)$. In this paper we prove that $\chi_{a}^{\prime \prime}(G) \leq 2 \Delta(G)-1$ if $\Delta(G) \geq 4$, and $\chi_{a}^{\prime \prime}(G) \leq\left\lceil\frac{5 \Delta(G)+8}{3}\right\rceil$ in general. This improves a result in Huang et al. (2012) which states that $\chi_{a}^{\prime \prime}(G) \leq 2 \Delta(G)$ for any graph with $\Delta(G) \geq 3$. © 2017 Elsevier B.V. All rights reserved.

1. Introduction

A proper total k-coloring of a graph G is a mapping $\phi: V(G) \cup E(G) \rightarrow\{1, \ldots, k\}$ such that $\phi(x) \neq \phi(y)$ for every pair of adjacent or incident elements $x, y \in V(G) \cup E(G)$. For a vertex $v \in V(G)$ and a proper total coloring ϕ, we define set $C_{\phi}(v)$ as $\{\phi(u v) \mid u v \in E(G)\} \cup\{\phi(v)\}$. The coloring ϕ is an adjacent vertex distinguishing total coloring or avd-total coloring if $C_{\phi}(v) \neq C_{\phi}(u)$ for every pair of adjacent vertices v and u. The adjacent vertex distinguishing total chromatic number $\chi_{a}^{\prime \prime}(G)$ of a graph G is the smallest integer k such that G has a k-avd total coloring.

For a graph G, having two adjacent vertices v and u with a degree $\Delta(G)$, both $C_{\phi}(v)$ and $C_{\phi}(u)$ have $\Delta(G)+1$ elements. Since $C_{\phi}(v) \backslash C_{\phi}(u) \neq \emptyset$ is a necessary condition for these sets to be different, such a graph G has $\chi_{a}^{\prime \prime}(G)$ greater than or equal to $\Delta(G)+2$. In fact, there exist many graphs with $\chi_{a}^{\prime \prime}(G)>\Delta(G)+2$, for example, any complete graph of odd order has that property. An avd-total coloring was first introduced by Zhang et al. [7], where they proposed the following conjecture:

Conjecture 1.1. For any graph $G, \chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.
First we prove an upper bound on $\chi_{a}^{\prime \prime}(G)$ related to the chromatic number $\chi(G)$ and the maximum degree $\Delta(G)$.
Lemma 1.2. For any graph $G, \chi_{a}^{\prime \prime}(G) \leq \chi(G)+\Delta(G)$.
Proof. Let $k=\chi(G), l=\Delta(G), K=\{1, \ldots, k-1\}$ and $L=\{k, \ldots, k+l\}$. According to the famous Vizing's theorem [4], $\chi^{\prime}(G) \leq \Delta(G)+1$ for every graph G. This means that we can properly color the edges of G with colors from L. Let $V=V(G)$, and let V_{1}, \ldots, V_{k} be color classes of a graph G. Since a proper coloring assigns different colors to every pair of adjacent vertices, each nonempty color class $V_{i}, 1 \leq i \leq k$, is an independent set of vertices in G. For every $j \in K$, we color every vertex from V_{j} with color j. Since $K \cap L=\emptyset$, we have $\phi(v) \neq \phi(v u)$ for every $v \in\left(V \backslash V_{k}\right)$ and $u \in N(v)$. On the other hand, $i \in\left(C_{\phi}(v) \backslash C_{\phi}(u)\right)$ for every $v \in V_{i}, u \in V_{j}, 1 \leq i<j \leq k-1$, and thus $C_{\phi}(v) \neq C_{\phi}(u)$. We now color the remaining vertices, that is, vertices from V_{k}. Let v be a vertex from V_{k}. Since $\Delta(G)=l$, vertex v has at most l incident edges, and there is at least

[^0]one color from L, say l_{1}, not used to color any of the edges incident with v. We color v with l_{1}. None of the vertices adjacent to v is colored from L, thus such a vertex coloring is proper. We know that $j \in C_{\phi}(u)$ for every $1 \leq j \leq k-1$ and every $u \in V_{j}$, and since $C_{\phi}(v) \cap K=\emptyset$ we have $C_{\phi}(v) \neq C_{\phi}(u)$. Therefore, the coloring described above is an avd-total coloring using $k+l=\chi(G)+\Delta(G)$ colors.

Zhang et al. [7] showed the value of $\chi_{a}^{\prime \prime}$ for complete graphs:

Lemma 1.3.

$$
\chi_{a}^{\prime \prime}\left(K_{n}\right)= \begin{cases}n+1, & \text { if } n \text { is even }, \\ n+2, & \text { if } n \text { is odd } .\end{cases}
$$

Regarding an upper bound on the chromatic number of a graph, we know that $\chi\left(C_{l}\right)=3$ for every odd l, and $\chi\left(K_{n}\right)=n+1$ for every n. Also, Brooks' theorem [1] states that $\chi(G) \leq \Delta(G)$ for any graph different from an odd cycle and a complete graph. As a direct consequence of Lemma 1.2, Lemma 1.3 and Brooks' theorem we get a simpler proof of the following bound, given by Huang, Wang and Yan [2].

Corollary 1.4. For any graph G with $\Delta(G) \geq 3$, we have $\chi_{a}^{\prime \prime}(G) \leq 2 \Delta(G)$.

2. An improved upper bound

The following definition and lemma were given in somewhat different forms in [2].
Definition 2.1. Let G be a graph with $\chi(G)=k$, and let V_{1}, \ldots, V_{k} be color classes of G. We say that V_{1}, \ldots, V_{k} are dominant color classes if $N(v) \cap V_{j} \neq \emptyset$ for every $v \in V_{i}, 1<i \leq k$, and every $j, 1 \leq j<i$. We call such a partitioning $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ of $V(G)$ a dominant partitioning.

Let V_{1}, \ldots, V_{k} be color classes of a graph G. We can always obtain a dominant partitioning using the following simple algorithm.

```
Algorithm 1 Obtaining a dominant partitioning
Input: color classes \(U_{1}, \ldots, U_{k}\)
Output: dominant partitioning \(\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}\)
    for all \(1 \leq i \leq k\) do
        \(V_{i} \leftarrow \emptyset\)
    end for
    \(i \leftarrow 1\)
    while \(i \leq k\) do
        for all \(u \in U_{i}\) do
            Let \(j, j \leq i\), be the smallest integer for which \(N(u) \cap V_{j}=\emptyset\).
            Include \(u\) in \(V_{j}\).
        end for
        \(i \leftarrow i+1\)
    end while
    return \(\left\{V_{1}, \ldots, V_{k}\right\}\)
```

Lemma 2.2. For any graph G with $\chi(G)=k$, there exists a dominant partitioning $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ of $V(G)$.
Proof. The previous algorithm guarantees that every vertex from $V_{i}, 1<i \leq k$, has at least one neighbor in every V_{j}, $1 \leq j<i$. If a vertex u from U_{i} has a neighboring vertex in every $V_{j}, 1 \leq j<i$, it is included in V_{i}. Since U_{i} is an independent set, none of the vertices included in V_{i} is adjacent to u. Thus, all sets of \mathcal{P} are independent, while $|\mathcal{P}|=k$, completing the proof.

The next theorem improves an upper bound for every graph G with $\Delta(G) \geq 5$, compared to Corollary 1.4.
Theorem 2.3. For any graph G with $\Delta(G) \geq 5$,

$$
\chi_{a}^{\prime \prime}(G) \leq 2 \Delta(G)-1
$$

The proof of this theorem is deferred to Section 3. Lu et al. [3] proved that $\chi_{a}^{\prime \prime}(G) \leq 7$ for any graph with maximum degree 4. This result, together with Theorem 2.3, implies the following:

Corollary 2.4. For any graph G with $\Delta(G) \geq 4$, we have $\chi_{a}^{\prime \prime}(G) \leq 2 \Delta(G)-1$.

https://daneshyari.com/en/article/8903034

Download Persian Version:
https://daneshyari.com/article/8903034

Daneshyari.com

[^0]: E-mail address: b.vuckovic@turing.mi.sanu.ac.rs.
 https://doi.org/10.1016/j.disc.2017.10.011
 0012-365X/© 2017 Elsevier B.V. All rights reserved.

