## ARTICLE IN PRESS

Discrete Mathematics (

Contents lists available at ScienceDirect



## **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

# An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs

#### Bojan Vučković

Matematički institut SANU, Kneza Mihaila 36, 11001 Beograd, p.p. 367, Serbia

#### ARTICLE INFO

Article history: Received 28 December 2016 Received in revised form 6 October 2017 Accepted 11 October 2017 Available online xxxx

Keywords: Adjacent vertex distinguishing total coloring Maximum degree

#### ABSTRACT

An adjacent vertex distinguishing total *k*-coloring of a graph *G* is a proper total *k*-coloring of *G* such that any pair of adjacent vertices have different sets of colors. The minimum number *k* needed for such a total coloring of *G* is denoted by  $\chi_a''(G)$ . In this paper we prove that  $\chi_a''(G) \le 2\Delta(G) - 1$  if  $\Delta(G) \ge 4$ , and  $\chi_a''(G) \le \lceil \frac{5\Delta(G)+8}{3} \rceil$  in general. This improves a result in Huang et al. (2012) which states that  $\chi_a''(G) \le 2\Delta(G)$  for any graph with  $\Delta(G) \ge 3$ . © 2017 Elsevier B.V. All rights reserved.

#### 1. Introduction

A proper total k-coloring of a graph G is a mapping  $\phi : V(G) \cup E(G) \rightarrow \{1, ..., k\}$  such that  $\phi(x) \neq \phi(y)$  for every pair of adjacent or incident elements  $x, y \in V(G) \cup E(G)$ . For a vertex  $v \in V(G)$  and a proper total coloring  $\phi$ , we define set  $C_{\phi}(v)$  as  $\{\phi(uv)|uv \in E(G)\} \cup \{\phi(v)\}$ . The coloring  $\phi$  is an *adjacent vertex distinguishing total coloring* or *avd-total coloring* if  $C_{\phi}(v) \neq C_{\phi}(u)$  for every pair of adjacent vertices v and u. The *adjacent vertex distinguishing total chromatic number*  $\chi_a''(G)$  of a graph G is the smallest integer k such that G has a k-avd total coloring.

For a graph *G*, having two adjacent vertices v and u with a degree  $\Delta(G)$ , both  $C_{\phi}(v)$  and  $C_{\phi}(u)$  have  $\Delta(G) + 1$  elements. Since  $C_{\phi}(v) \setminus C_{\phi}(u) \neq \emptyset$  is a necessary condition for these sets to be different, such a graph *G* has  $\chi_a''(G)$  greater than or equal to  $\Delta(G) + 2$ . In fact, there exist many graphs with  $\chi_a''(G) > \Delta(G) + 2$ , for example, any complete graph of odd order has that property. An avd-total coloring was first introduced by Zhang et al. [7], where they proposed the following conjecture:

**Conjecture 1.1.** For any graph G,  $\chi_a''(G) \leq \Delta(G) + 3$ .

First we prove an upper bound on  $\chi_a^{\prime\prime}(G)$  related to the chromatic number  $\chi(G)$  and the maximum degree  $\Delta(G)$ .

**Lemma 1.2.** For any graph G,  $\chi_a''(G) \leq \chi(G) + \Delta(G)$ .

**Proof.** Let  $k = \chi(G)$ ,  $l = \Delta(G)$ ,  $K = \{1, ..., k - 1\}$  and  $L = \{k, ..., k + l\}$ . According to the famous Vizing's theorem [4],  $\chi'(G) \leq \Delta(G) + 1$  for every graph *G*. This means that we can properly color the edges of *G* with colors from *L*. Let V = V(G), and let  $V_1, ..., V_k$  be color classes of a graph *G*. Since a proper coloring assigns different colors to every pair of adjacent vertices, each nonempty color class  $V_i$ ,  $1 \leq i \leq k$ , is an independent set of vertices in *G*. For every  $j \in K$ , we color every vertex from  $V_j$  with color *j*. Since  $K \cap L = \emptyset$ , we have  $\phi(v) \neq \phi(vu)$  for every  $v \in (V \setminus V_k)$  and  $u \in N(v)$ . On the other hand,  $i \in (C_{\phi}(v) \setminus C_{\phi}(u))$  for every  $v \in V_i$ ,  $u \in V_j$ ,  $1 \leq i < j \leq k - 1$ , and thus  $C_{\phi}(v) \neq C_{\phi}(u)$ . We now color the remaining vertices, that is, vertices from  $V_k$ . Let *v* be a vertex from  $V_k$ . Since  $\Delta(G) = l$ , vertex *v* has at most *l* incident edges, and there is at least

https://doi.org/10.1016/j.disc.2017.10.011 0012-365X/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: B. Vučković, An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs, Discrete Mathematics (2017), https://doi.org/10.1016/j.disc.2017.10.011.

E-mail address: b.vuckovic@turing.mi.sanu.ac.rs.

#### 2

### ARTICLE IN PRESS

#### B. Vučković / Discrete Mathematics 🛛 ( 💵 🖿 ) 💵 – 💵

one color from *L*, say  $l_1$ , not used to color any of the edges incident with *v*. We color *v* with  $l_1$ . None of the vertices adjacent to *v* is colored from *L*, thus such a vertex coloring is proper. We know that  $j \in C_{\phi}(u)$  for every  $1 \le j \le k - 1$  and every  $u \in V_j$ , and since  $C_{\phi}(v) \cap K = \emptyset$  we have  $C_{\phi}(v) \ne C_{\phi}(u)$ . Therefore, the coloring described above is an avd-total coloring using  $k + l = \chi(G) + \Delta(G)$  colors.  $\Box$ 

Zhang et al. [7] showed the value of  $\chi_a''$  for complete graphs:

Lemma 1.3.

 $\chi_a''(K_n) = \begin{cases} n+1, & \text{if } n \text{ is even,} \\ n+2, & \text{if } n \text{ is odd.} \end{cases}$ 

Regarding an upper bound on the chromatic number of a graph, we know that  $\chi(C_l) = 3$  for every odd l, and  $\chi(K_n) = n+1$  for every n. Also, Brooks' theorem [1] states that  $\chi(G) \leq \Delta(G)$  for any graph different from an odd cycle and a complete graph. As a direct consequence of Lemma 1.2, Lemma 1.3 and Brooks' theorem we get a simpler proof of the following bound, given by Huang, Wang and Yan [2].

**Corollary 1.4.** For any graph *G* with  $\Delta(G) \geq 3$ , we have  $\chi_a''(G) \leq 2\Delta(G)$ .

#### 2. An improved upper bound

The following definition and lemma were given in somewhat different forms in [2].

**Definition 2.1.** Let *G* be a graph with  $\chi(G) = k$ , and let  $V_1, \ldots, V_k$  be color classes of *G*. We say that  $V_1, \ldots, V_k$  are dominant color classes if  $N(v) \cap V_j \neq \emptyset$  for every  $v \in V_i$ ,  $1 < i \le k$ , and every j,  $1 \le j < i$ . We call such a partitioning  $\mathcal{P} = \{V_1, \ldots, V_k\}$  of V(G) a dominant partitioning.

Let  $V_1, \ldots, V_k$  be color classes of a graph G. We can always obtain a dominant partitioning using the following simple algorithm.

Algorithm 1 Obtaining a dominant partitioning

```
Input: color classes U_1, ..., U_k

Output: dominant partitioning \mathcal{P} = \{V_1, ..., V_k\}

for all 1 \le i \le k do

V_i \leftarrow \emptyset

end for

i \leftarrow 1

while i \le k do

for all u \in U_i do

Let j, j \le i, be the smallest integer for which N(u) \cap V_j = \emptyset.

Include u in V_j.

end for

i \leftarrow i + 1

end while

return \{V_1, ..., V_k\}
```

**Lemma 2.2.** For any graph G with  $\chi(G) = k$ , there exists a dominant partitioning  $\mathcal{P} = \{V_1, \ldots, V_k\}$  of V(G).

**Proof.** The previous algorithm guarantees that every vertex from  $V_i$ ,  $1 < i \le k$ , has at least one neighbor in every  $V_j$ ,  $1 \le j < i$ . If a vertex *u* from  $U_i$  has a neighboring vertex in every  $V_j$ ,  $1 \le j < i$ , it is included in  $V_i$ . Since  $U_i$  is an independent set, none of the vertices included in  $V_i$  is adjacent to *u*. Thus, all sets of  $\mathcal{P}$  are independent, while  $|\mathcal{P}| = k$ , completing the proof.  $\Box$ 

The next theorem improves an upper bound for every graph *G* with  $\Delta(G) \ge 5$ , compared to Corollary 1.4.

**Theorem 2.3.** For any graph *G* with  $\Delta(G) \ge 5$ ,

 $\chi_a''(G) \le 2\Delta(G) - 1$ 

The proof of this theorem is deferred to Section 3. Lu et al. [3] proved that  $\chi_a''(G) \le 7$  for any graph with maximum degree 4. This result, together with Theorem 2.3, implies the following:

**Corollary 2.4.** For any graph G with  $\Delta(G) \ge 4$ , we have  $\chi_a''(G) \le 2\Delta(G) - 1$ .

Please cite this article in press as: B. Vučković, An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs, Discrete Mathematics (2017), https://doi.org/10.1016/j.disc.2017.10.01.

Download English Version:

## https://daneshyari.com/en/article/8903034

Download Persian Version:

https://daneshyari.com/article/8903034

Daneshyari.com