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a b s t r a c t

In this paper, we construct almost resolvable cycle systems of order 4k+ 1 for odd k ≥ 11.
This completes the proof of the existence of almost resolvable cycle systemswith odd cycle
length. As a by-product, some new solutions to the Hamilton–Waterloo problem are also
obtained.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we use V (H) and E(H) to denote the vertex-set and the edge-set of a graph H , respectively. We denote
the cycle of length k by Ck and the complete graph on v vertices by Kv . A factor of a graph H is a spanning subgraph whose
vertex-set coincides with V (H). If its connected components are isomorphic to G, we call it a G-factor. A G-factorization of
H is a set of edge-disjoint G-factors of H whose edge-sets partition E(H). A Ck-factorization of H is a partition of E(H) into
Ck-factors. An r-regular factor is called an r-factor. Also, a 2-factorization of a graph H is a partition of E(H) into 2-factors.

A k-cycle system of order v is a collection of k-cycles which partition E(Kv). A k-cycle system of order v exists if and only
if 3 ≤ k ≤ v, v ≡ 1 (mod 2) and v(v − 1) ≡ 0 (mod 2k) [2,8,27,32]. A k-cycle system of order v is resolvable if it has a
Ck-factorization. A resolvable k-cycle system of order v exists if and only if 3 ≤ k ≤ v, v and k are odd, and v ≡ 0 (mod k),
see [3,4,16,20,21,25,26]. If v ≡ 1 (mod 2k), then a k-cycle system exists, but it is not resolvable. In this case, Vanstone et al.
[28] started the research of the existence of an almost resolvable k-cycle system.

In a k-cycle system of order v, a collection of (v−1)/k disjoint k-cycles is called an almost parallel class. In a k-cycle system
of order v ≡ 1 (mod 2k), the maximum possible number of almost parallel classes is (v − 1)/2, in which case a half-parallel
class containing (v − 1)/2k disjoint k-cycles is left over. A k-cycle system of order v whose cycle set can be partitioned into
(v − 1)/2 almost parallel classes and a half-parallel class is called an almost resolvable k-cycle system, denoted by k-ARCS(v).

For recursive constructions of almost resolvable k-cycle systems, C. C. Lindner, et al. [19] have considered the general
existence problem of almost resolvable k-cycle system from the commutative quasigroup for k ≡ 0 (mod 2) and made a
hypothesis: if there exists a k-ARCS(2k+1) for k ≡ 0 (mod 2) and k ≥ 8, then there exists a k-ARCS(2kt+1) except possibly
for t = 2. H. Cao et al. [13,23,31] continued to consider the recursive constructions of an almost resolvable k-cycle system
for k ≡ 1 (mod 2). Many authors contributed to the following known results.

Theorem 1.1 ([1,6,13–15,19,28]). Let k ≥ 3, t ≥ 1 be integers and n = 2kt + 1. There exists a k-ARCS(n) for k ∈

{3, 4, 5, 6, 7, 8, 9, 10, 14}, except for (k, n) ∈ {(3, 7), (3, 13), (4, 9)} and except possibly for (k, n) ∈ {(8, 33), (14, 57)}.
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Theorem 1.2 ([23,31]). For any odd k ≥ 11, there exists a k-ARCS(2kt + 1), where t ≥ 1 and t ̸= 2.

In this paper, we construct almost resolvable cycle systems of order 4k+ 1 for odd k ≥ 11. Combining the known results
in Theorems 1.1–1.2, we will prove the following main result.

Theorem 1.3. For any odd k ≥ 3, there exists a k-ARCS(2kt + 1) for all t ≥ 1 except for (k, t) ∈ {(3, 1), (3, 2)}.

2. Preliminary

In this section we present a basic lemma for the construction of a k-ARCS(4k + 1). The main idea is to find some initial
cycles with special properties such that all the required almost parallel classes can be obtained from them. We need the
following notions for that lemma.

Suppose Γ is an additive group and I = {∞1, ∞2, . . . ,∞f } is a set which is disjoint with Γ . We will consider an action
of Γ on Γ ∪ I which coincides with the right regular action on the elements of Γ , and the action of Γ on I will coincide
with the identity map. In other words, for any γ ∈ Γ , we have that x + γ is the image under γ of any x ∈ Γ , and x + γ = x
holds for any x ∈ I . Given a graph H with vertices in Γ ∪ I , the translate of H by an element γ of Γ is the graph H + γ
obtained from H by replacing each vertex x ∈ V (H) with the vertex x + γ . The development of H under a subgroup Σ of Γ

is the collection devΣ (H) = {H + x | x ∈ Σ} of all translates of H by an element of Σ .
For our constructions, we set Γ = Zk × Z4. Given a graph H with vertices in Γ and any pair (r, s) ∈ Z4 × Z4,

we set ∆(r,s)H = {x − y | {(x, r), (y, s)} ∈ E(H)}. Finally, given a list H = {H1,H2, . . . ,Ht} of graphs, we denote by
∆(r,s)H = ∪

t
i=1∆(r,s)Hi the multiset union of the ∆(r,s)His.

Lemma 2.1. Let v = 4k+1 and C = {F1, F2}where each Fi (i = 1, 2) is a vertex-disjoint union of four cycles of length k satisfying
the following conditions:

(i) V (Fi) = ((Zk × Z4) ∪ {∞}) \ {(ai, bi)} for some (ai, bi) ∈ Zk × Z4, i = 1, 2;
(ii) ∞ has a neighbor in Zk × {j} for each j ∈ Z4;
(iii) ∆(p,p)C = Zk \ {0} for each p ∈ {0, 1};
(iv) ∆(q,q)C = Zk \ {0, ±dq} for each q ∈ {2, 3}, where dq satisfies (dq, k) = 1;
(v) ∆(r,s)C = Zk for each pair (r, s) ∈ Z4 × Z4 satisfying r ̸= s.

Then, there exists a k-ARCS(v).

Proof. Let V (Kv) = (Zk × Z4) ∪ {∞}. Note that 0, dq, 2dq, . . . , (k − 1)dq are k distinct elements since (dq, k) = 1. Then we
have the required half parallel class which is formed by the two cycles ((0, q), (dq, q), (2dq, q), . . . , ((k − 1)dq, q)), q = 2, 3.
By (i), we know that Fi is an almost parallel class. All the required 2k almost parallel classes are Fi + (l, 0), i = 1, 2, l ∈ Zk.

Now we show that the half parallel class and the 2k almost parallel classes form a k-ARCS(v). Let F ′ be a graph with the
edge-set {{(a, q), (a+dq, q)} | a ∈ Zk, q = 2, 3} andΣ := Zk×{0}. LetF = devΣ (C) ∪ F ′. The total number of edges – counted
with their respective multiplicities – covered by the almost parallel classes and the half parallel class of F is 2k(4k+ 1), that
is exactly the size of E(Kv). Therefore, we only need to prove that every pair of vertices lies in a suitable translate of C or in
F ′. By (ii), an edge {(z, j), ∞} of Kv must appear in a cycle of devΣ (C).

Now consider an edge {(z, j), (z ′, j′)} of Kv whose vertices both belong to Zk × Z4. If j = j′ ∈ {2, 3} and z − z ′
∈ {±dq},

then this edge belongs to F ′. In all other cases there is, by (iii)-(v), an edge of some Fi of the form {(w, j), (w′, j′)} such that
w−w′

= z−z ′. It then follows that Fi+ (−w′
+z ′, 0) is an almost parallel class of devΣ (Fi) containing the edge {(z, j), (z ′, j′)}

and the conclusion follows. □

3. k-ARCS(4k + 1) for k ≡ 1 (mod 4)

In this section, we will prove the existence of a k-ARCS(4k + 1) for k ≡ 1 (mod 4).

Lemma 3.1. For any k ≥ 13 and k ≡ 1 (mod 4), there exists a k-ARCS(4k + 1).

Proof. Let v = 4k+1 and k = 4n+1, n ≥ 3.We use Lemma 2.1 to construct a k-ARCS(v) with V (Kv) = (Zk ×Z4)∪{∞}. The
required parameters in (i) and (iv) of Lemma 2.1 are (a1, b1) = (0, 3), (a2, b2) = (0, 2), d2 = 2, and d3 =

k−1
2 . The required 8

cycles in F1 = {C1, C2, C3, C4} and F2 = {C5, C6, C7, C8} are listed as below.

The cycle C1 is the concatenation of the sequences T1, (0, 0), and T2, where

T1 = ((n, 0), (−n, 1), . . . , (n − i, 0), (−(n − i), 1), . . . , (1, 0), (−1, 1)), 0 ≤ i ≤ n − 1;

T2 = ((1, 1), (−1, 0), . . . , (1 + i, 1), (−(1 + i), 0), . . . , (n, 1), (−n, 0)), 0 ≤ i ≤ n − 1.

Note: Actually T1 can be viewed as the concatenation of the sequences T 0
1 , T 1

1 , . . . , T n−1
1 , where the general formula is

T i
1 = ((n − i, 0), (−(n − i), 1)), 0 ≤ i ≤ n − 1. Thus, for brevity, we just list the first sequence at the beginning of T1
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