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a b s t r a c t

We give a lower bound for the number of total dominating sets of a graph together with
a characterization of the extremal graphs, for trees as well as arbitrary connected graphs
of given order. Moreover, we obtain a sharp lower bound involving both the order and the
total domination number, and characterize the extremal graphs as well.
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1. Introduction

A dominating set D is a set of vertices of a graph G with the property that every vertex of G either lies in D or has a
neighbor in D. Total domination is an even stronger property: D is called a total dominating set of G if every vertex of G
has a neighbor in D, whether or not it lies in D itself. The most classical and well-studied graph parameter in the context
of (total) domination is the (total) domination number: the domination number γ (G) of a graph G is the smallest cardinality
of a dominating set, and likewise the total domination number γt (G) is the smallest cardinality of a total dominating set.
Numerous upper and lower bounds and other results on these numbers have been obtained over the years, we refer to
the books [6,7] by Haynes, Hedetniemi and Slater and the more recent book [8] by Henning and Yeo, which focuses on
total domination, for a comprehensive treatment of the subject. Comparatively little work has been done on the number of
dominating or total dominating sets. These belong to the class of graph parameters based on counting subsets with specific
properties; other well-studied examples are the number of independent sets and the number of matchings, see [12] for a
recent survey including these and other examples.

As for the number ∂(G) of dominating sets of a graph G, one has the trivial bounds

1 ≤ ∂(G) ≤ 2n
− 1,

with equality for the empty and complete graphs, respectively. Bród and Skupień [2] studied the number of dominating sets
in trees. The maximum of 2n−1

+ 1 for trees with n vertices is attained only by the star (except for the cases n = 4 and
n = 5, when the path also attains the maximum). The lower bound, on the other hand, is not only more complicated, the
trees attaining it are no longer unique. We will observe a similar phenomenon for total domination in this paper. As shown
in [13], the lower bound for trees is also sharp for arbitrary connected graphs and even graphs without isolated vertices. See
also the recent paper by Skupień [11]. For trees, similar results can also be found for the number of efficient dominating sets,
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minimal dominating sets and minimal 2-dominating sets (see [3,9,10]). In these cases, the maximum is more interesting,
though.

The focus of this paper is the number of total dominating sets of a graph, whichwewill denote by ∂t (G).We have similarly
trivial bounds:

0 ≤ ∂t (G) ≤ 2n
− n − 1.

We set ∂t (G) = 0 if G has one or more isolated vertices, since in this case the graph does not have any total dominating sets.
This is the only case in which the lower bound holds with equality. The upper bound holds with equality if and only if G is a
complete graph. For trees, the upper bound is still quite simple, but it already illustrates some of our main ideas:

Proposition 1. We have

∂t (T ) ≤ 2n−1
− 1

for every tree T with n vertices, with equality only for the star.

Proof. The statement is trivial for n = 1 and n = 2, so let us assume that n ≥ 3. Every tree T with at least three vertices has
two or more leaves, thus at least one vertex adjacent to a leaf (we will call such a vertex a support vertex); we denote this
vertex by v. The vertex v has to be part of every total dominating set. This leaves us with only 2n−1 possible sets remaining,
of which {v} is clearly not a total dominating set (v is not dominated). Thus ∂t (T ) ≤ 2n−1

− 1, and equality can only hold if
v is the only vertex adjacent to a leaf. This only holds for the star. ■

Just as for the number of dominating sets, the lower bound is more interesting. In the following section, we will show
that the minimum number of total dominating sets of a tree (connected graph, or even arbitrary graph without components
of order 1 or 2) with n vertices is of orderΘ(9n/7). A precise bound, alongwith the characterization of the extremal graphs, is
given in Theorems 5, 6 and 7. In Theorems 16 and 17we obtain a sharp lower bound for ∂t (G) that takes the total domination
number into account as well. See Section 3 for details.

2. The general lower bound

In this section, we determine the minimum number of total dominating sets of a connected graph with n vertices for
arbitrary n. In fact, we will show that the lower bound we obtain remains valid for disconnected graphs as long as we
exclude trivial components of one vertex (for which there is no total dominating set) or two vertices (for which the only
total dominating set consists of both vertices).

It turns out to be advantageous to prove the lower bound for trees first (Theorem 5), and to generalize it to connected
graphs (Theorem 6) and arbitrary graphs (Theorem 7) later. Leaves and support vertices will play an important role: we call
a vertex with only a single neighbor a leaf, even if the graph is not a tree. The unique neighbor of a leaf is called a support
vertex. The trivial observation that every support vertex has to be contained in every total dominating set of a graph will
become very useful in the following.

As wewill see, the extremal graphs are obtained as unions of subdivided stars: the subdivided star S(K1,r ) is obtained from
a star K1,r with r leaves by subdividing each edge into two edges (thus introducing an additional vertex on each edge).

Let us now begin our discussion by considering trees.Wewill writemn = min{∂t (T ) : |T | = n} for theminimumnumber
of total dominating sets of a tree with n vertices, and Tn = {T : |T | = n, ∂t (T ) = mn} for the set of all trees that attain this
minimum. We start with a very useful lemma on merging trees.

Lemma 2. Let T1 and T2 be two trees, and let v1, v2 be vertices of T1 and T2, respectively. Consider the tree T obtained by adding
the edge v1v2 to the union T1 ∪ T2. We have

∂t (T ) ≥ ∂t (T1)∂t (T2),

and the equality holds if and only if v1 and v2 are at distance 2 from a leaf in T1 and T2, respectively (v1 and v2 may themselves
be leaves).

Proof. Obviously, every total dominating set of T1∪T2 is also a total dominating set of T , which readily proves the inequality:
note that ∂t (T1 ∪ T2) = ∂t (T1)∂t (T2), since every total dominating set of T1 ∪ T2 is the union of a total dominating set of T1
and a total dominating set of T2, and vice versa. It remains to determine the cases of equality.

Assume first that both v1 and v2 have the required property. Consider any total dominating set D of T , and assume that
its restriction to T1 is not total dominating. The only reason this could happen is that v1 is dominated by v2 in T , but not by
any other neighbor. One of these neighbors, however, is a support vertex in T1 by our assumption. If this support vertex is
not present in D, then its leaf neighbor is not dominated, and we reach a contradiction. Thus the only total dominating sets
of T are obtained as unions of total dominating sets of T1 and T2.

For the converse suppose, for instance, that there is no leaf in T1 whose distance to v1 is 2. Then none of v1’s neighbors
in T1 is a support vertex in T . It is easy to verify in this case that D = V (T ) \ NT1 (v1) (i.e., the set of all vertices of T except
for v1’s neighbors in T1) is a total dominating set of T , but the restriction of D to T1 is clearly not (v1 is not dominated). Thus
∂t (T ) > ∂t (T1)∂t (T2) in this case, and by symmetry the same argument applies to v2. ■
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