Planar graphs without 3-cycles adjacent to cycles of length 3 or 5 are (3, 1)-colorable

Zhengke Miao ${ }^{\text {a }}$, Yingqian Wang ${ }^{\text {b }}$, Chuanni Zhang ${ }^{\text {b }}$, Huajun Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China
${ }^{\text {b }}$ Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

A R T I CLE INFO

Article history:

Received 15 August 2016
Received in revised form 20 February 2017
Accepted 2 November 2017

Keywords:

(k, d)-coloring
Nsk3CC
Reducible configuration
Graph operation
Bad cycles
Super extension

Abstract

Given a nonnegative integer d and a positive integer k, a graph G is said to be (k, d)-colorable if the vertices of G can be colored with k colors such that every vertex has at most d neighbors receiving the same color as itself. Let \mathscr{F} be the family of planar graphs without 3 -cycles adjacent to cycles of length 3 or 5 . This paper proves that everyone in \mathscr{F} is $(3,1)$ colorable. This is the best possible in the sense that there are members in \mathscr{F} which are not (3, 0)-colorable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let k be a positive integer and d a nonnegative integer. $A(k, d)$-coloring of a graph G is a mapping $\psi: V(G) \longmapsto\{1,2, \ldots, k\}$ such that every vertex $v \in V(G)$ has at most d neighbors receiving the same color as itself. A graph G is called (k, d)-colorable if it admits a (k, d)-coloring. The (k, d)-colorings are called defective or improper colorings in the earlier papers. Clearly, the ($k, 0$)-coloring is just the classical proper k-coloring. The ($k, 1$)-coloring, as observed in [17,16], offers an approach decomposing a graph into a matching and a k-colorable graph.

In terms of (k, d)-coloring, the well-known Four Color Theorem [1] states that every planar graph is (4,0$)$-colorable. What happens if we color planar graphs with only three colors? Cowen, Cowen and Woodall [7] proved that all planar graphs are $(3,2)$-colorable and there exist planar graphs which are not $(3,1)$-colorable. Which condition can guarantee a planar graph to be $(3,1)$ - or even $(3,0)$-colorable? Let C_{k} denote a cycle of length k. It is interesting to notice that every C_{3}-free planar graph is (3, 0)-colorable [9] while for every integer $k \geq 4$, there are C_{k}-free planar graphs which are not (3,0)-colorable [5]. Since the Four Color Conjecture turned into Four Color Theorem in 1977 [1], the (3, 0)-colorability of planar graphs has been extensively studied in the literature. We refer the readers to [3] for a good overview on the study of (3, 0)-colorability of planar graphs. The most important two issues on the $(3,0)$-colorability of planar graphs are to prove or disprove the following
Steinberg's conjecture ($\mathbf{1 9 7 6}[2,11,13]$): Every planar graph with neither 4-nor 5-cycles is (3,0)-colorable; and to solve the following
Havel's problem ($\mathbf{1 9 7 0}$ [10,11]): Does there exist a constant C such that every planar graph with triangles at distance at least C is $(3,0)$-colorable?

[^0]In 2003, motivated by Steinberg's conjecture and Havel's problem, Borodin and Raspaud [5] proved that every planar graph with neither 5-cycles nor triangles at distance less than 4 is (3,0)-colorable and proposed the following conjecture.

Bordeaux conjecture.

(1) Every planar graph with neither 5-cycles nor intersecting triangles is $(3,0)$-colorable (the weak version).
(2) Every planar graph with neither 5-cycles nor adjacent triangles is $(3,0)$-colorable (the strong version).

In 2009, after proving that planar graphs without triangles adjacent to cycles of length from 3 to 9 are (3, 0)-colorable, Borodin et al. [4] proposed the following conjecture.
Nsk3CC. Every planar graph without 3-cycles adjacent to cycles of length 3 or 5 is (3,0)-colorable.
Havel's problem has now been solved by Dvořák, Král and Thomas [14] in the positive. As for Steinberg's conjecture, very recently, Cohen-Addad et al. [6] disproved it by constructing a non-3-colorable planar graph with neither 4- nor 5-cycles. Since Nsk3CC is stronger than the stronger Bordeaux conjecture, and the later is again stronger than Steinberg's conjecture, Cohen-Addad et al. [6] actually disproved all conjectures above except the weak Bordeaux conjecture!

Nevertheless, one may raise the following problems.
Problem 1. Is every planar graph with neither 4 - nor 5 -cycles (3,1)-colorable?
Problem 2. Is every planar graph with neither 5-cycles nor adjacent triangles (3,1)-colorable?
Problem 3. Is every planar graph without 3-cycles adjacent to cycles of length 3 or 5 (3,1)-colorable?
Problem 1 has already been solved affirmatively in the list version by Lih et al. [12]. More precisely, in [12], the authors actually proved that, for each $i \in\{5,6,7\}$, planar graphs with neither 4 - nor i-cycles are list (3,1)-colorable. Later, Dong and Xu [8] extended the result to $i \in\{8,9\}$; and in 2013, Wang and Xu [15] proved that planar graphs without 4-cycles are list (3, 1)-colorable.

Problem 2 has also been solved affirmatively by Xu [17]. In 2014, Wang and Xu [16] even proved that planar graphs without 5 -cycles are (3,1)-colorable.

Yet Problem 3 is still open up to date. This paper will solve Problem 3 affirmatively, too. Namely this paper will prove the following result.

Theorem 1. Planar graphs without 3-cycles adjacent to cycles of length 3 or 5 are (3, 0)-colorable.
The rest of this section is devoted to some definitions. Graphs considered here are finite, simple (i.e, no loops or multiedges) and undirected. We follow [2] for those used but undefined notation and terminology. A graph G is planar if it can be embedded into the plane so that its edges meet only at their ends. Any such particular embedding of a planar graph is called a plane graph. Let $G=(V, E, F)$ be a graph with vertex set V, edge set E and face set F. For a vertex $v \in V$, the degree and the neighborhood of v are denoted by $d(v)$ and $N(v)$, respectively. Call a vertex $v \in V$ a k-vertex (resp. a k^{+}-vertex or a k^{-}-vertex) if $d(v)=k$ (resp. $d(v) \geq k$ or $d(v) \leq k$). For a face $f \in F$, the set of vertices on f and the boundary walk of f are denoted by $V(f)$ and $b(f)$, respectively. The size, or more preferably here, the degree of f, denoted by $d(f)$, is the length of $b(f)$. The notions of a k-face, a k^{+}-face and a k^{-}-face are defined analogous to the ones of a k-vertex, a k^{+}-vertex and a k^{-}-vertex, respectively. Call a face internal if it is not the unbounded face (the unbounded face is usually denoted by f_{0}). Call a vertex external if it is on the unbounded face f_{0}; internal otherwise. An edge $x y$ is called a $(d(x), d(y))$-edge, and x is called a $d(x)$-neighbor of y. Moreover, x is called an isolated neighbor of y, if $x y$ is not incident with any cycle of length 3 . For a face $f \in F$, the subgraph of G induced by $V(f)$ is denoted by $G[V(f)]$. If $u_{1}, u_{2}, \ldots, u_{n}$ are all vertices of $b(f)$ in a cyclic order, then we write $f=\left[u_{1} u_{2} \ldots u_{n}\right]$. Two faces or cycles are intersecting if they have at least one vertex in common; adjacent if they have at least one edge in common. Let C be a cycle of G. The length of C, denoted $|C|$, is the number of edges of C. A k-cycle is a cycle of length k. A 3-cycle is usually called a triangle. The set of vertices inside or outside a cycle C is denoted by int(C) or $\operatorname{ext}(C)$, respectively. Consequently, $\operatorname{Int}(C)=G-\operatorname{ext}(C)$ and $\operatorname{Ext}(C)=G-\operatorname{int}(C)$ are two vertex-induced subgraphs of G. Note that the chords of C lying inside C belong to $\operatorname{Ext}(C)$. Call a cycle C separating if both $\operatorname{int}(C)$ and ext(C) are not empty. Sometimes, we do not distinguish C with $V(C)$ or $E(C)$.

Let $G=(V, E, F)$ be a plane graph without 3 -cycles adjacent to 3 - or 5 -cycles, and C a cycle of length at most 7 in G. Call C bad if $\operatorname{Int}(C)$ contains a subgraph H that is isomorphic to the configuration shown in Fig. 1, where C is the boundary of the unbounded face of the subgraph H. The subgraph H is called a bad partition of $\operatorname{Int}(C)$, or simply C. Call a 7^{-}-cycle good if it is not bad. By the definition of a bad cycle, if a cycle C is bad then $|C|=6$ or 7 . Note that 5^{-}-cycles are good.

A chord of a cycle C is an edge that connects two non-consecutive vertices of C. Let $e=x y$ be a chord of a cycle C, and P_{1}, P_{2} the two paths of C between x and y. If the length of the cycle $C_{i}=P_{i} \cup\{e\}$ is $k_{i}, i=1,2$, then e is called a (k_{1}, k_{2})-chord of C. Since G has no 3 -cycles adjacent to 3 - or 5 -cycles, the following remark is obvious.

Remark 1. Let C be a cycle in G.
(1) If $|C| \leq 5$, then C has no chord.
(2) If $|C|=6$, then C has at most one chord, if any, a (4, 4)-chord.
(3) If $|C|=7$, then C has at most one chord, if any, a $(3,6)$-chord or a $(4,5)$-chord.

https://daneshyari.com/en/article/8903053

Download Persian Version:

https://daneshyari.com/article/8903053

Daneshyari.com

[^0]: E-mail addresses: zkmiao@jsnu.edu.cn (Z. Miao), yqwang@zjnu.cn (Y. Wang), 2829569454@qq.com (C. Zhang), huajunzhang@zjnu.cn (H. Zhang).

