
Discrete Mathematics 341 (2018) 588–599

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Planar graphs without 3-cycles adjacent to cycles of length 3
or 5 are (3, 1)-colorable
Zhengke Miao a, Yingqian Wang b, Chuanni Zhang b, Huajun Zhang b

a School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China
b Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

a r t i c l e i n f o

Article history:
Received 15 August 2016
Received in revised form 20 February 2017
Accepted 2 November 2017

Keywords:
(k, d)-coloring
Nsk3CC
Reducible configuration
Graph operation
Bad cycles
Super extension

a b s t r a c t

Given a nonnegative integer d and a positive integer k, a graphG is said to be (k, d)-colorable
if the vertices of G can be colored with k colors such that every vertex has at most d
neighbors receiving the same color as itself. Let F be the family of planar graphs without
3-cycles adjacent to cycles of length 3 or 5. This paper proves that everyone in F is (3, 1)-
colorable. This is the best possible in the sense that there are members in F which are not
(3, 0)-colorable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let k be a positive integer and d a nonnegative integer. A (k, d)-coloring of a graphG is amappingψ: V (G) ↦−→{1, 2, . . . , k}
such that every vertex v ∈ V (G) has at most d neighbors receiving the same color as itself. A graph G is called (k, d)-colorable
if it admits a (k, d)-coloring. The (k, d)-colorings are called defective or improper colorings in the earlier papers. Clearly,
the (k, 0)-coloring is just the classical proper k-coloring. The (k, 1)-coloring, as observed in [17,16], offers an approach
decomposing a graph into a matching and a k-colorable graph.

In terms of (k, d)-coloring, thewell-known Four Color Theorem [1] states that every planar graph is (4, 0)-colorable.What
happens if we color planar graphs with only three colors? Cowen, Cowen and Woodall [7] proved that all planar graphs are
(3, 2)-colorable and there exist planar graphs which are not (3, 1)-colorable. Which condition can guarantee a planar graph
to be (3, 1)- or even (3, 0)-colorable? Let Ck denote a cycle of length k. It is interesting to notice that every C3-free planar
graph is (3, 0)-colorable [9] while for every integer k ≥ 4, there are Ck-free planar graphs which are not (3, 0)-colorable [5].
Since the Four Color Conjecture turned into Four Color Theorem in 1977 [1], the (3, 0)-colorability of planar graphs has
been extensively studied in the literature. We refer the readers to [3] for a good overview on the study of (3, 0)-colorability
of planar graphs. The most important two issues on the (3, 0)-colorability of planar graphs are to prove or disprove the
following
Steinberg’s conjecture (1976 [2,11,13]): Every planar graph with neither 4- nor 5-cycles is (3,0)-colorable;
and to solve the following
Havel’s problem (1970 [10,11]): Does there exist a constant C such that every planar graph with triangles at distance at least C
is (3,0)-colorable?
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In 2003, motivated by Steinberg’s conjecture and Havel’s problem, Borodin and Raspaud [5] proved that every planar
graph with neither 5-cycles nor triangles at distance less than 4 is (3, 0)-colorable and proposed the following conjecture.
Bordeaux conjecture.
(1) Every planar graph with neither 5-cycles nor intersecting triangles is (3, 0)-colorable (the weak version).
(2) Every planar graph with neither 5-cycles nor adjacent triangles is (3, 0)-colorable (the strong version).

In 2009, after proving that planar graphs without triangles adjacent to cycles of length from 3 to 9 are (3, 0)-colorable,
Borodin et al. [4] proposed the following conjecture.
Nsk3CC. Every planar graph without 3-cycles adjacent to cycles of length 3 or 5 is (3,0)-colorable.

Havel’s problem has now been solved by Dvořák, Král and Thomas [14] in the positive. As for Steinberg’s conjecture, very
recently, Cohen-Addad et al. [6] disproved it by constructing a non-3-colorable planar graph with neither 4- nor 5-cycles.
Since Nsk3CC is stronger than the stronger Bordeaux conjecture, and the later is again stronger than Steinberg’s conjecture,
Cohen-Addad et al. [6] actually disproved all conjectures above except the weak Bordeaux conjecture!

Nevertheless, one may raise the following problems.

Problem 1. Is every planar graph with neither 4- nor 5-cycles (3,1)-colorable?

Problem 2. Is every planar graph with neither 5-cycles nor adjacent triangles (3,1)-colorable?

Problem 3. Is every planar graph without 3-cycles adjacent to cycles of length 3 or 5 (3,1)-colorable?

Problem 1 has already been solved affirmatively in the list version by Lih et al. [12]. More precisely, in [12], the authors
actually proved that, for each i ∈ {5, 6, 7}, planar graphs with neither 4- nor i-cycles are list (3, 1)-colorable. Later, Dong and
Xu [8] extended the result to i ∈ {8, 9}; and in 2013, Wang and Xu [15] proved that planar graphs without 4-cycles are list
(3, 1)-colorable.

Problem 2 has also been solved affirmatively by Xu [17]. In 2014, Wang and Xu [16] even proved that planar graphs
without 5-cycles are (3, 1)-colorable.

Yet Problem 3 is still open up to date. This paper will solve Problem 3 affirmatively, too. Namely this paper will prove the
following result.

Theorem 1. Planar graphs without 3-cycles adjacent to cycles of length 3 or 5 are (3, 0)-colorable.

The rest of this section is devoted to some definitions. Graphs considered here are finite, simple (i.e, no loops or multi-
edges) and undirected. We follow [2] for those used but undefined notation and terminology. A graph G is planar if it can
be embedded into the plane so that its edges meet only at their ends. Any such particular embedding of a planar graph is
called a plane graph. Let G = (V , E, F ) be a graph with vertex set V , edge set E and face set F . For a vertex v ∈ V , the degree
and the neighborhood of v are denoted by d(v) and N(v), respectively. Call a vertex v ∈ V a k-vertex (resp. a k+-vertex or
a k−-vertex) if d(v) = k (resp. d(v) ≥ k or d(v) ≤ k). For a face f ∈ F , the set of vertices on f and the boundary walk of f
are denoted by V (f ) and b(f ), respectively. The size, or more preferably here, the degree of f , denoted by d(f ), is the length
of b(f ). The notions of a k-face, a k+-face and a k−-face are defined analogous to the ones of a k-vertex, a k+-vertex and a
k−-vertex, respectively. Call a face internal if it is not the unbounded face (the unbounded face is usually denoted by f0). Call
a vertex external if it is on the unbounded face f0; internal otherwise. An edge xy is called a (d(x), d(y))-edge, and x is called
a d(x)-neighbor of y. Moreover, x is called an isolated neighbor of y, if xy is not incident with any cycle of length 3. For a face
f ∈ F , the subgraph of G induced by V (f ) is denoted by G[V (f )]. If u1, u2, . . . , un are all vertices of b(f ) in a cyclic order, then
we write f = [u1u2 . . . un]. Two faces or cycles are intersecting if they have at least one vertex in common; adjacent if they
have at least one edge in common. Let C be a cycle of G. The length of C , denoted |C |, is the number of edges of C . A k-cycle
is a cycle of length k. A 3-cycle is usually called a triangle. The set of vertices inside or outside a cycle C is denoted by int(C)
or ext(C), respectively. Consequently, Int(C) = G − ext(C) and Ext(C) = G − int(C) are two vertex-induced subgraphs of G.
Note that the chords of C lying inside C belong to Ext(C). Call a cycle C separating if both int(C) and ext(C) are not empty.
Sometimes, we do not distinguish C with V (C) or E(C).

Let G = (V , E, F ) be a plane graph without 3-cycles adjacent to 3- or 5-cycles, and C a cycle of length at most 7 in G. Call
C bad if Int(C) contains a subgraph H that is isomorphic to the configuration shown in Fig. 1, where C is the boundary of the
unbounded face of the subgraph H . The subgraph H is called a bad partition of Int(C), or simply C . Call a 7−-cycle good if it is
not bad. By the definition of a bad cycle, if a cycle C is bad then |C | = 6 or 7. Note that 5−-cycles are good.

A chord of a cycle C is an edge that connects two non-consecutive vertices of C . Let e = xy be a chord of a cycle C , and P1,
P2 the two paths of C between x and y. If the length of the cycle Ci = Pi ∪ {e} is ki, i = 1, 2, then e is called a (k1, k2)-chord of
C . Since G has no 3-cycles adjacent to 3- or 5-cycles, the following remark is obvious.

Remark 1. Let C be a cycle in G.
(1) If |C | ≤ 5, then C has no chord.
(2) If |C | = 6, then C has at most one chord, if any, a (4, 4)-chord.
(3) If |C | = 7, then C has at most one chord, if any, a (3, 6)-chord or a (4, 5)-chord.
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