

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

Choosability with union separation

Mohit Kumbhat ^{a,*}, Kevin Moss ^b, Derrick Stolee ^{c,1}

- ^a Department of Mathematics, University of Nevada, Reno, NV, USA
- ^b Department of Mathematics, Iowa State University, Ames, IA, USA
- c Microsoft, Raleigh, NC, USA

ARTICLE INFO

Article history: Received 30 December 2015 Received in revised form 21 October 2017 Accepted 23 October 2017

ABSTRACT

List coloring generalizes graph coloring by requiring the color of a vertex to be selected from a list of colors specific to that vertex. One refinement of list coloring, called *choosability with separation*, requires that the intersection of adjacent lists is sufficiently small. We introduce a new refinement, called *choosability with union separation*, where we require that the union of adjacent lists is sufficiently large. For $t \geq k$, a (k,t)-list assignment is a list assignment L where $|L(v)| \geq k$ for all vertices v and $|L(u) \cup L(v)| \geq t$ for all edges uv. A graph is (k,t)-choosable if there is a proper coloring for every (k,t)-list assignment. We explore this concept through examples of graphs that are not (k,t)-choosable, demonstrating sparsity conditions that imply a graph is (k,t)-choosable, and proving that all planar graphs are (3,11)-choosable and (4,9)-choosable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a graph G and a positive integer k, a k-list assignment of G is a function E on the vertices of G such that E such that E is a set of size at least E. An E-coloring is an assignment E on the vertices of G such that E is a signment E of all adjacent pairs E and E if there exists an E-coloring for every E-list assignment E of E and E is there exists an E-coloring for the E-list assignment E is assignment E and is denoted by E in the minimum E for which E is E-choosable is called the E-choosable is coloring and is denoted by E introduced the concept of E is an integral E introduced the concept of E is introduction, choosability has received significant attention and has been refined in many different ways.

One refinement of choosability is called *choosability with separation* and has received recent attention [1,4,7,8,11] since it was defined by Kratochvíl, Tuza, and Voigt [10]. Let G be a graph and let S be a nonnegative integer called the *separation* parameter. A S (S (S - S)-list assignment is a S-list assignment S use that S and S are a graph S is S (S - S for all adjacent pairs S we say a graph S is S (S - S to any S - S to a sparation parameter S increases, the restriction on the intersection-size of adjacent lists becomes more strict.

We introduce a complementary refinement of choosability called *choosability with union separation*. A (k, k + s)-list assignment is a k-list assignment L such that $|L(u) \cup L(v)| \ge k + s$ for all adjacent pairs uv. We similarly say G is (k, t)-choosable to imply choosability with either kind of separation, depending on whether $t \le k$ or k < t. Observe that if G is (k, k + s)-choosable, then G is both (k, k - r)-choosable and (k, k + r)-choosable for all $r \ge s$. Note that if L is a (k, k - s)-list assignment, we may assume that |L(v)| = k as removing colors from lists does not violate the intersection-size requirement

E-mail addresses: mkumbhat@unr.edu (M. Kumbhat), kmoss@iastate.edu (K. Moss), dstolee@microsoft.com (D. Stolee).

^{*} Corresponding author.

¹ Work completed while at Iowa State University.

for adjacent vertices. However, when considering a (k, k + s)-list assignment, we may not remove colors from lists as that may violate the union-size requirement for adjacent vertices. Due to this asymmetry, we do not know if there is a function f(k, s) such that every (k, k - s)-choosable graph is also (k, k + f(s))-choosable.

Thomassen [12] proved that all planar graphs are 5-choosable. The main question we consider regarding planar graphs and choosability with union separation is identifying minimum integers t_3 and t_4 such that all planar graphs are $(3, t_3)$ -choosable and $(4, t_4)$ -choosable. We demonstrate that $6 < t_3 < 11$ and $6 < t_4 < 9$.

Kratochvíl, Tuza, and Voigt [9] proved that all planar graphs are (4, 1)-choosable and conjecture that all planar graphs are (4, 2)-choosable. Voigt [14] constructed a planar graph that is not (4, 3)-choosable and hence is not (4, 5)-choosable. We show that $t_4 < 9$.

Theorem 1. All planar graphs are (4, 9)-choosable.

A chorded ℓ -cycle is a cycle of length ℓ with one additional edge. For each $\ell \in \{5, 6, 7\}$, Berikkyzy et al. [1] demonstrated that if G is a planar graph that does not contain a chorded ℓ -cycle, then G is (4, 2)-choosable. The case $\ell = 4$ is notably missing from their results, especially since Borodin and Ivanova [3] proved that if G is a planar graph that does not contain a chorded 4-cycle or a chorded 5-cycle, then G is 4-choosable. We prove that if G is a planar graph containing no chorded 4-cycle, then G is (4, 7)-choosable (see Theorem 8).

Kratochvíl, Tuza, and Voigt [9] conjecture that all planar graphs are (3, 1)-choosable. Voigt [15] constructed a planar graph that is not (3, 2)-choosable and hence is not (3, 4)-choosable. In Section 2 we construct graphs that are not (k, t)-choosable, including a planar graph that is not (3, 5)-choosable. This hints towards a strong difference between intersection separation and union separation. We show that $t_3 \le 11$.

Theorem 2. All planar graphs are (3, 11)-choosable.

We also consider sparsity conditions that imply (k, t)-choosability. For a graph G, the maximum average degree of G, denoted Mad(G), is the maximum fraction $\frac{2|E(H)|}{|V(H)|}$ among subgraphs $H \subseteq G$. If Mad(G) < k, then G is (k-1)-degenerate and hence is k-choosable. Since Mad $(K_{k+1}) = k$ and $\chi_{\ell}(K_{k+1}) > k$, this bound on Mad(G) cannot be relaxed. In Section 4, we prove that G is (k, t)-choosable when Mad(G) < 2k - o(1) where o(1) tends to zero as t tends to infinity. This is asymptotically sharp as we construct graphs that are not (k, t)-choosable with Mad(G) = 2k - o(1).

Many of our proofs use the discharging method. For an overview of this method, see the surveys of Borodin [2], Cranston and West [5], or the overview in Berikkyzy et al. [1]. We use a very simple reducible configuration that is described by Proposition 6 in Section 3.

1.1. Notation

A (simple) graph G has vertex set V(G) and edge set E(G). Additionally, if G is a plane graph, then G has a face set F(G). Let n(G) = |V(G)| and e(G) = |E(G)|. For a vertex $v \in V(G)$, the set of vertices adjacent to v is the neighborhood of v, denoted N(v). The degree of v, denoted d(v), is the number of vertices adjacent to v. We say v is a k-vertex if d(v) = k, a k^- -vertex if $d(v) \le k$ and a k^+ -vertex if $d(v) \ge k$. Let G - v denote the graph given by deleting the vertex v from G. For an edge $uv \in E(G)$, let G - uv denote the graph given by deleting the edge uv from G. For a plane graph G and a face G, let G denote the length of the face boundary walk; say G is a G-face if G and a G-face if G is a G-face if G and a G-face if G if G is a G-face if G is a G-face if G is a G-face if G if G is a G-face if G if G is a G-face if G is a G-face if G if G is a G-face if G is a G-face if G if G if G is a G-face if G is a G-face if G if G is a G-face if G is a G-face if G is a G-face if G is a G-

2. Non-(k, t)-choosable graphs

Proposition 3. For all $k \ge 2$ and $t \ge 2k - 1$, there exists a bipartite graph that is not (k, t)-choosable.

Proof. Let u_1, \ldots, u_k be nonadjacent vertices and let $L(u_1), \ldots, L(u_k)$ be disjoint sets of size t - k + 1. For every element $(a_1, \ldots, a_k) \in \prod_{i=1}^k L(u_i)$, let $A = \{a_1, \ldots, a_k\}$, create a vertex x_A adjacent to u_i for all $i \in [k]$, and let $L(x_A) = A$ (see Fig. 1). Notice that $|L(u_i) \cup L(x_A)| = t$ for all $i \in [k]$ and all vertices x_A , so L is a (k, t)-list assignment. If there is a proper L-coloring c of this graph, then let $A = \{c(u_i) : i \in [k]\}$; the color $c(x_A)$ is in A and hence the coloring is not proper. \square

Observe that the graph constructed in Proposition 3 has average degree $\frac{2k(t-k+1)^k}{k+(t-k+1)^k}$; as t increases, this fraction approaches 2k from below. Observe that when k=2 the graph built in Proposition 3 is planar, giving us the following corollary.

Corollary 4. For all $t \ge 3$, there exists a bipartite planar graph that is not (2, t)-choosable.

We now construct a specific planar graph that is not (3, 5)-choosable.

Proposition 5. There exists a planar graph that is not (3, 5)-choosable.

Download English Version:

https://daneshyari.com/en/article/8903055

Download Persian Version:

https://daneshyari.com/article/8903055

<u>Daneshyari.com</u>