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ARTICLE INFO ABSTRACT

Article history: List coloring generalizes graph coloring by requiring the color of a vertex to be selected from
Received 30 December 2015 alist of colors specific to that vertex. One refinement of list coloring, called choosability with
Received in revised form 21 October 2017 separation, requires that the intersection of adjacent lists is sufficiently small. We introduce

Accepted 23 October 2017 anew refinement, called choosability with union separation, where we require that the union

of adjacent lists is sufficiently large. For t > k, a (k, t)-list assignment is a list assignment
L where |L(v)| > k for all vertices v and |L(u) U L(v)| > t for all edges uv. A graph is
(k, t)-choosable if there is a proper coloring for every (k, t)-list assignment. We explore this
concept through examples of graphs that are not (k, t)-choosable, demonstrating sparsity
conditions that imply a graph is (k, t)-choosable, and proving that all planar graphs are
(3, 11)-choosable and (4, 9)-choosable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a graph G and a positive integer k, a k-list assignment of G is a function L on the vertices of G such that L(v) is a set of
size at least k. An L-coloring is an assignment ¢ on the vertices of G such that c(v) € L(v) for all vertices v and c(u) # c(v) for
all adjacent pairs uv. A graph is k-choosable if there exists an L-coloring for every k-list assignment L of G, and G is k-colorable
if there exists an L-coloring for the k-list assignment L(v) = {1, ..., k}. The minimum k for which G is k-choosable is called
the choosability or the list-chromatic number of G and is denoted by x,(G). Erdds, Rubin, and Taylor [6] and independently
Vizing [13] introduced the concept of list coloring and demonstrated that for all ¥ > k > 2, there exist graphs that are
k-colorable but not k’'-choosable. Since its introduction, choosability has received significant attention and has been refined
in many different ways.

One refinement of choosability is called choosability with separation and has received recent attention [1,4,7,8,11] since
it was defined by Kratochvil, Tuza, and Voigt [10]. Let G be a graph and let s be a nonnegative integer called the separation
parameter. A (k, k — s)-list assignment is a k-list assignment L such that |L(u) N L(v)| < k — s for all adjacent pairs uv. We say
a graph G is (k, t)-choosable if, for any (k, t)-list assignment L, there exists an L-coloring of G. As the separation parameter s
increases, the restriction on the intersection-size of adjacent lists becomes more strict.

We introduce a complementary refinement of choosability called choosability with union separation. A (k, k + s)-list
assignment is a k-list assignment L such that |L(u) U L(v)| > k + s for all adjacent pairs uv. We similarly say G is (k, t)-
choosable to imply choosability with either kind of separation, depending on whether t < k or k < t. Observe that if G is
(k, k + s)-choosable, then G is both (k, k — r)-choosable and (k, k + r)-choosable for all > s. Note that if Lis a (k, k — s)-list
assignment, we may assume that |L(v)| = k as removing colors from lists does not violate the intersection-size requirement
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for adjacent vertices. However, when considering a (k, k + s)-list assignment, we may not remove colors from lists as that
may violate the union-size requirement for adjacent vertices. Due to this asymmetry, we do not know if there is a function
f(k, s) such that every (k, k — s)-choosable graph is also (k, k + f(s))-choosable.

Thomassen [12] proved that all planar graphs are 5-choosable. The main question we consider regarding planar
graphs and choosability with union separation is identifying minimum integers t3 and t4 such that all planar graphs are
(3, t3)-choosable and (4, t4)-choosable. We demonstrate that 6 < t3 < 11and 6 < t; < 9.

Kratochvil, Tuza, and Voigt [9] proved that all planar graphs are (4, 1)-choosable and conjecture that all planar graphs
are (4, 2)-choosable. Voigt [ 14] constructed a planar graph that is not (4, 3)-choosable and hence is not (4, 5)-choosable. We
show thatt; < 9.

Theorem 1. All planar graphs are (4, 9)-choosable.

A chorded ¢-cycle is a cycle of length £ with one additional edge. For each ¢ € {5, 6, 7}, Berikkyzy et al. [ 1] demonstrated
that if G is a planar graph that does not contain a chorded ¢-cycle, then G is (4, 2)-choosable. The case £ = 4 is notably
missing from their results, especially since Borodin and Ivanova [3] proved that if G is a planar graph that does not contain
a chorded 4-cycle or a chorded 5-cycle, then G is 4-choosable. We prove that if G is a planar graph containing no chorded
4-cycle, then G is (4, 7)-choosable (see Theorem 8).

Kratochvil, Tuza, and Voigt [9] conjecture that all planar graphs are (3, 1)-choosable. Voigt [ 15] constructed a planar graph
that is not (3, 2)-choosable and hence is not (3, 4)-choosable. In Section 2 we construct graphs that are not (k, t)-choosable,
including a planar graph that is not (3, 5)-choosable. This hints towards a strong difference between intersection separation
and union separation. We show that t; < 11.

Theorem 2. All planar graphs are (3, 11)-choosable.

We also consider sparsity conditions that imply (k, t)-choosability. For a graph G, the maximum average degree of G,
denoted Mad(G), is the maximum fraction 2E(H) among subgraphs H C G. If Mad(G) < k, then G is (k — 1)-degenerate
and hence is k-choosable. Since Mad (K1) = ;c and x,(Kjy1) > k, this bound on Mad(G) cannot be relaxed. In Section 4, we
prove that Gis (k, t)-choosable when Mad(G) < 2k—o(1) where o(1) tends to zero as t tends to infinity. This is asymptotically
sharp as we construct graphs that are not (k, t)-choosable with Mad(G) = 2k — o(1).

Many of our proofs use the discharging method. For an overview of this method, see the surveys of Borodin [2], Cranston
and West [5], or the overview in Berikkyzy et al. [1]. We use a very simple reducible configuration that is described by
Proposition 6 in Section 3.

1.1. Notation

A (simple) graph G has vertex set V(G) and edge set E(G). Additionally, if G is a plane graph, then G has a face set F(G). Let
n(G) = |V(G)| and e(G) = |E(G)|. For a vertex v € V(G), the set of vertices adjacent to v is the neighborhood of v, denoted
N(v). The degree of v, denoted d(v), is the number of vertices adjacent to v. We say v is a k-vertex if d(v) = k, a k™ -vertex if
d(v) < kand ak*-vertex if d(v) > k.Let G— v denote the graph given by deleting the vertex v from G. For an edge uv € E(G),
let G — uv denote the graph given by deleting the edge uv from G. For a plane graph G and a face f, let £(f ) denote the length
of the face boundary walk; say f is a k-face if £(f) = k and a k™ -face if £(f) > k.

2. Non-(k, t)-choosable graphs

Proposition 3. Forallk > 2 and t > 2k — 1, there exists a bipartite graph that is not (k, t)-choosable.

Proof. Let uy, ..., u; be nonadjacent vertices and let L(u4), ..., L(u,) be disjoint sets of size t — k + 1. For every element
(a,...,a) € H;;lL(ui), let A = {aq, ..., ai}, create a vertex x4 adjacent to u; for all i € [k], and let L(x4) = A (see Fig. 1).
Notice that |L(u;) U L(x4)| = t for all i € [k] and all vertices x4, so Lis a (k, t)-list assignment. If there is a proper L-coloring c
of this graph, then let A = {c(u;) : i € [k]}; the color c(x4) is in A and hence the coloring is not proper. O

. k1) . . .
Observe that the graph constructed in Proposition 3 has average degree %; as t increases, this fraction approaches

2k from below. Observe that when k = 2 the graph built in Proposition 3 is planar, giving us the following corollary.

Corollary 4. For allt > 3, there exists a bipartite planar graph that is not (2, t)-choosable.

We now construct a specific planar graph that is not (3, 5)-choosable.

Proposition 5. There exists a planar graph that is not (3, 5)-choosable.



Download English Version:

https://daneshyari.com/en/article/8903055

Download Persian Version:

https://daneshyari.com/article/8903055

Daneshyari.com


https://daneshyari.com/en/article/8903055
https://daneshyari.com/article/8903055
https://daneshyari.com

