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a b s t r a c t

This paper studies the quantity p(n, r), that is theminimal number of edges of an n-uniform
hypergraph without panchromatic coloring (it means that every edge meets every color)
in r colors. If r ≤ c n

ln n then all bounds have a type A1(n, ln n, r)( r
r−1 )

n
≤ p(n, r) ≤

A2(n, r, ln r)( r
r−1 )

n, where A1, A2 are some algebraic fractions. The main result is a new
lower bound on p(n, r) when r is at least c

√
n; we improve an upper bound on p(n, r) if

n = o(r3/2).
Also we show that p(n, r) has upper and lower bounds depending only on n/r when the

ratio n/r is small, which cannot be reached by the previous probabilistic machinery.
Finally we construct an explicit example of a hypergraph without panchromatic color-

ing and with ( r
r−1 + o(1))n edges for r = o(

√ n
ln n ).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph is a pair (V , E), where V is a finite set whose elements are called vertices and E is a family of subsets of
V , called edges. A hypergraph is n-uniform if every edge has size n. A vertex r-coloring of a hypergraph (V , E) is a map
c : V → {1, . . . , r}.

An r-coloring of vertices of a hypergraph is called panchromatic if every edge contains a vertex of every color. The problem
of the existence of a panchromatic coloring of a hypergraphwas stated in the local form by P. Erdős and L. Lovász in [4]. They
proved that if every edge of an n-uniform hypergraph intersects at most rn−1/4(r − 1)n other edges then the hypergraph
has a panchromatic r-coloring. Then A. Kostochka in [7] stated the problem in the present form and linked it with the
r-choosability problem using ideas by P. Erdős, A.L. Rubin and H. Taylor from [5]. Also A. Kostochka and D.R. Woodall [9]
found some sufficient conditions on a hypergraph to have a panchromatic coloring in terms of Hall ratio. Reader can find a
survey on history and results on the related problems in [8,11].

1.1. Upper bounds

Using the results from [1] A. Kostochka proved [7] that for some constants c1, c2 > 0
1
r
ec1

n
r ≤ p(n, r) ≤ rec2

n
r . (1)

In works [13,14] D. Shabanov gives the following upper bounds:

p(n, r) ≤ c
n2 ln r
r2

(
r

r − 1

)n

, if 3 ≤ r = o(
√
n), n > n0;

E-mail address:matelk@mail.ru.

https://doi.org/10.1016/j.disc.2017.10.030
0012-365X/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2017.10.030
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2017.10.030&domain=pdf
mailto:matelk@mail.ru
https://doi.org/10.1016/j.disc.2017.10.030


D. Cherkashin / Discrete Mathematics 341 (2018) 652–657 653

p(n, r) ≤ c
n3/2 ln r

r

(
r

r − 1

)n

, if r = O(n2/3) and n0 < n = O(r2); (2)

p(n, r) ≤ c max
(
n2

r
, n3/2

)
ln r
(

r
r − 1

)n

for all n, r ≥ 2.

Let us introduce the quantity p′(n, r) that is the minimal number of edges in an n-uniform hypergraph H = (V , E) such
that any subset of vertices V ′

⊂ V with |V ′
| ≥

⌈ r−1
r |V |

⌉
contains an edge.

Note that by pigeonhole principle every vertex r-coloring contains a color of size at most
⌊ 1

r |V |
⌋
. So the complement to

this color has size at least |V | −
⌊ 1

r |V |
⌋

=
⌈ r−1

r |V |
⌉
. Hence, p(n, r) ≤ p′(n, r). This argument is in the spirit of the standard

estimation of the chromatic number via the independence number.
The following theorem gives better upper bound in the case when n = o(r3/2).

Theorem 1.1. The following inequality holds for every n ≥ 2, r ≥ 2

p′(n, r) ≤ c
n2 ln r

r

(
r

r − 1

)n

.

It immediately implies

p(n, r) ≤ c
n2 ln r

r

(
r

r − 1

)n

.

1.2. Lower bounds

We start by noting that an evident probabilistic argument gives p(n, r) ≥
1
r (

r
r−1 )

n. This gives lower bound (1)with c1 = 1.
This was essentially improved by D. Shabanov in [13]:

p(n, r) ≥ c
1
r2

( n
ln n

)1/3( r
r − 1

)n

for n, r ≥ 2, r < n.

Next, A. Rozovskaya and D. Shabanov [12] showed that

p(n, r) ≥ c
1
r2

√
n

ln n

(
r

r − 1

)n

for n, r ≥ 2, r ≤
n

2 ln n
.

Using the Alterations method (see Section 3 of [2]) we can get the following lower bound for all the range of n, r . It gives
better results when r ≥ c

√
n.

Theorem 1.2. For n ≥ r ≥ 2 holds

p(n, r) ≥ e−1 r − 1
n − 1

e
n−1
r−1 .

There is a completely different way to get almost the same bound. First, we need to prove intermediate bound. It is based on
the geometric rethinking of A. Pluhár’s ideas [10].

Theorem 1.3. For n ≥ r ≥ 2 such that r ≤ c n
ln n holds

p(n, r) ≥ c max
(
n1/4

r
√
r
,

1
√
n

)(
r

r − 1

)n

.

Combining Theorems 1.2 and 1.3 we prove the following theorem.

Theorem 1.4. For n ≥ r ≥ 2 such that
√
n ≤ r ≤ c ′ n

ln n holds

p(n, r) ≥ c
r
n
e

n
r .

Remark 1.5. Theorem 1.3, unlike Theorems 1.2 and 1.4, admits a local version.
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