Note

Connectivity keeping stars or double-stars in 2-connected graphs

Yingzhi Tian ${ }^{\text {a,* }}$, Jixiang Meng ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$, Liqiong Xu ${ }^{\text {c }}$
${ }^{\text {a }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
c School of Science, Jimei University, Xiamen, Fujian 361021, PR China

A R TICLE IN F O

Article history:

Received 4 July 2017
Received in revised form 10 October 2017
Accepted 14 October 2017
Available online xxxx

Keywords:

2-Connected graphs
Stars
Double-stars
Mader's conjecture

Abstract

In Mader (2010), Mader conjectured that for every positive integer k and every finite tree T with order m, every k-connected, finite graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor+m-1$ contains a subtree T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is k-connected. In the same paper, Mader proved that the conjecture is true when T is a path. Diwan and Tholiya (2009) verified the conjecture when $k=1$. In this paper, we will prove that Mader's conjecture is true when T is a star or double-star and $k=2$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graph always means a finite, undirected graph without multiple edges and without loops. For graphtheoretical terminologies and notation not defined here, we follow [1]. For a graph G, the vertex set, the edge set, the minimum degree and the connectivity number of G are denoted by $V(G), E(G), \delta(G)$ and $\kappa(G)$, respectively. The order of a graph G is the cardinality of its vertex set, denoted by $|G| . k$ and m always denote positive integers.

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.
Theorem 1.1 ([2]). Every k-connected graph G of minimum degree $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor$ has a vertex u with $\kappa(G-u) \geq k$.
Fujita and Kawarabayashi proved in [4] that every k-connected graph G with minimum degree at least $\left\lfloor\frac{3}{2} k\right\rfloor+2$ has an edge $e=u v$ such that $G-\{u, v\}$ is still k-connected. They conjectured that there are similar results for the existence of connected subgraphs of prescribed order $m \geq 3$ keeping the connectivity.

Conjecture 1 ([4]). For all positive integers k, m, there is a (least) non-negative integer $f_{k}(m)$ such that every k-connected graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor-1+f_{k}(m)$ contains a connected subgraph W of exact order m such that $G-V(W)$ is still k-connected.

They also gave examples in [4] showing that $f_{k}(m)$ must be at least m for all positive integers k, m. In [5], Mader proved that $f_{k}(m)$ exists and $f_{k}(m)=m$ holds for all k, m.

Theorem 1.2 ([5]). Every k-connected graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor+m-1$ for positive integers k, m contains a path P of order m such that $G-V(P)$ remains k-connected.

[^0]In the same paper, Mader [5] asked whether the result is true for any other tree T instead of a path, and gave the following conjecture.

Conjecture 2 ([5]). For every positive integer k and every finite tree T, there is a least non-negative integer $t_{k}(T)$, such that every k-connected, finite graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor-1+t_{k}(T)$ contains a subgraph $T^{\prime} \cong T$ with $\kappa\left(G-V\left(T^{\prime}\right)\right) \geq k$.

Mader showed that $t_{k}(T)$ exists in [6].
Theorem 1.3 ([6]). Let G be a k-connected graph with $\delta(G) \geq 2(k-1+m)^{2}+m-1$ and let T be a tree of order m for positive integers k, m. Then there is a tree $T^{\prime} \subseteq G$ isomorphic to T such that $G-V\left(T^{\prime}\right)$ remains k-connected.

Mader further conjectured that $t_{k}(T)=|T|$.
Conjecture $\mathbf{3}$ ([5]). For every positive integer k and every tree $T, t_{k}(T)=|T|$ holds.
Theorem 1.2 showed that Conjecture 3 is true when T is a path. Diwan and Tholiya [3] proved that the conjecture holds when $k=1$. In the next section, we will verify that Conjecture 3 is true when T is a star and $k=2$. It is proved in the last section that Conjecture 3 is true when T is a double-star and $k=2$.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Note that any block of a connected graph of order at least two is 2 -connected or isomorphic to K_{2}.

For a vertex subset U of a graph $G, G[U]$ denotes the subgraph induced by U and $G-U$ is the subgraph induced by $V(G)-U$. The neighborhood $N_{G}(U)$ of U is the set of vertices in $V(G)-U$ which are adjacent to some vertex in U. If $U=\{u\}$, we also use $G-u$ and $N_{G}(u)$ for $G-\{u\}$ and $N_{G}(\{u\})$, respectively. The degree $d_{G}(u)$ of u is $\left|N_{G}(u)\right|$. If H is a subgraph of G, we often use H for $V(H)$. For example, $N_{G}(H), H \cap G$ and $H \cap U$ mean $N_{G}(V(H)$), $V(H) \cap V(G)$ and $V(H) \cap U$, respectively. If there is no confusion, we always delete the subscript, for example, $d(u)$ for $d_{G}(u), N(u)$ for $N_{G}(u), N(U)$ for $N_{G}(U)$ and so on. A tree is a connected graph without cycles. A star is a tree that has exact one vertex with degree greater than one. A double-star is a tree that has exact two vertices with degree greater than one.

2. Connectivity keeping stars in 2-connected graphs

Theorem 2.1. Let G be a 2-connected graph with minimum degree $\delta(G) \geq m+2$, where m is a positive integer. Then for a star T with order m, G contains a star T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is 2 -connected.

Proof. If $m \leq 3$, then T is a path, and the theorem holds by Theorem 1.2. Thus we assume $m \geq 4$ in the following.
Since $\delta(G) \geq m+2$, there is a star $T^{\prime} \subseteq G$ with $T^{\prime} \cong T$. Assume $V\left(T^{\prime}\right)=\left\{u, v_{1}, \ldots, v_{m-1}\right\}$ and $E\left(T^{\prime}\right)=\left\{u v_{i} \mid 1 \leq i \leq m-1\right\}$. We say T^{\prime} is a star rooted at u or with root u. Let $G^{\prime}=G-T^{\prime}$. Let B be a maximum block in G^{\prime} and let l be the number of components of $G^{\prime}-B$. If $l=0$, then $B=G^{\prime}$ is 2 -connected. So we may assume that $l \geq 1$. Let H_{1}, \ldots, H_{l} be the components of $G^{\prime}-B$ with $\left|H_{1}\right| \geq \cdots \geq\left|H_{l}\right|$.

Take such a star T^{\prime} so that
(P1) $|B|$ is as large as possible,
(P2) (| $H_{1}\left|, \ldots,\left|H_{l}\right|\right)$ is as large as possible in lexicographic order, subject to (P1).
We will complete the proof by a series of claims.
Claim 1. $\left|N\left(H_{i}\right) \cap B\right| \leq 1$ and $\left|N\left(H_{i}\right) \cap V\left(T^{\prime}\right)\right| \geq 1$ for each $i \in\{1, \ldots, l\}$.
Since B is a block of G^{\prime}, we have $\left|N\left(H_{i}\right) \cap B\right| \leq 1$ for each $i \in\{1, \ldots, l\}$. Since G is 2 -connected, $\left|N\left(H_{i}\right) \cap V\left(T^{\prime}\right)\right| \geq 1$ for each $i \in\{1, \ldots, l\}$.

Claim 2. $l=1$.
Assume $l \geq 2$. By Claim 1, there is an edge th between T^{\prime} and H_{1}, where $t \in T^{\prime}$ and $h \in H_{1}$. Choose a vertex $x \in H_{l}$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{l}\right) \cap B\right| \leq 1$ (by Claim 1), we have $|N(x) \backslash(B \cup\{t\})| \geq m+2-1-1=m$. Thus we can choose a star $T^{\prime \prime} \cong T$ with root x such that $V\left(T^{\prime \prime}\right) \cap(B \cup\{t\})=\emptyset$. But then either there is a larger block than B in $G-T^{\prime \prime}$, or $G-T^{\prime \prime}-B$ contains a larger component than $H_{1}\left(H_{1} \cup\{t\}\right.$ is contained in a component of $\left.G-T^{\prime \prime}-B\right)$, which contradicts to (P1) or (P2).

Claim 3. $|N(t) \cap B| \leq 1$ and $\left|N(t) \cap H_{1}\right| \geq 2$ for any vertex $t \in V\left(T^{\prime}\right)$.
Assume $|N(t) \cap B| \geq 2$. Choose a vertex $x \in H_{1}$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we have $|N(x) \backslash(B \cup\{t\})| \geq$ $m+2-1-1=m$. Thus we can choose a star $T^{\prime \prime} \cong T$ with root x such that $V\left(T^{\prime \prime}\right) \cap(B \cup\{t\})=\emptyset$. But $G-T^{\prime \prime}$ has a block containing $B \cup\{t\}$ as a subset, which contradicts to (P1). Thus $|N(t) \cap B| \leq 1$ holds. By $d(t) \geq m+2$ and $|N(t) \cap B| \leq 1$, we have $\left|N(t) \cap H_{1}\right|=d(t)-|N(t) \cap B|-\left|N(t) \cap T^{\prime}\right| \geq m+2-1-(m-1)=2$.

Claim 4. For any edge $t_{1} t_{2} \in E\left(T^{\prime}\right),\left|N\left(\left\{t_{1}, t_{2}\right\}\right) \cap B\right| \leq 1$ holds.

https://daneshyari.com/en/article/8903066

Download Persian Version:

https://daneshyari.com/article/8903066

Daneshyari.com

[^0]: The research is supported by NSFC (Nos. 11401510, 11531011) and NSFXJ (No. 2015KL019).

 * Corresponding author.

 E-mail addresses: tianyzhxj@163.com (Y. Tian), mjx@xju.edu.cn (J. Meng), hjlai@math.wvu.edu (H.-J. Lai), 200661000016@jmu.edu.cn (L. Xu).

