ARTICLE IN PRESS

Discrete Mathematics (

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Connectivity keeping stars or double-stars in 2-connected graphs^{*}

Yingzhi Tian^{a,*}, Jixiang Meng^a, Hong-Jian Lai^b, Liqiong Xu^c

^a College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^c School of Science, Jimei University, Xiamen, Fujian 361021, PR China

ARTICLE INFO

Article history: Received 4 July 2017 Received in revised form 10 October 2017 Accepted 14 October 2017 Available online xxxx

Keywords: 2-Connected graphs Stars Double-stars Mader's conjecture

ABSTRACT

In Mader (2010), Mader conjectured that for every positive integer k and every finite tree T with order m, every k-connected, finite graph G with $\delta(G) \ge \lfloor \frac{3}{2}k \rfloor + m - 1$ contains a subtree T' isomorphic to T such that G - V(T') is k-connected. In the same paper, Mader proved that the conjecture is true when T is a path. Diwan and Tholiya (2009) verified the conjecture when k = 1. In this paper, we will prove that Mader's conjecture is true when T is a star or double-star and k = 2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, *graph* always means a finite, undirected graph without multiple edges and without loops. For graphtheoretical terminologies and notation not defined here, we follow [1]. For a graph *G*, the vertex set, the edge set, the minimum degree and the connectivity number of *G* are denoted by V(G), E(G), $\delta(G)$ and $\kappa(G)$, respectively. The *order* of a graph *G* is the cardinality of its vertex set, denoted by |G|. *k* and *m* always denote positive integers.

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.

Theorem 1.1 ([2]). Every k-connected graph G of minimum degree $\delta(G) \ge \lfloor \frac{3}{2}k \rfloor$ has a vertex u with $\kappa(G-u) \ge k$.

Fujita and Kawarabayashi proved in [4] that every *k*-connected graph *G* with minimum degree at least $\lfloor \frac{3}{2}k \rfloor + 2$ has an edge e = uv such that $G - \{u, v\}$ is still *k*-connected. They conjectured that there are similar results for the existence of connected subgraphs of prescribed order $m \ge 3$ keeping the connectivity.

Conjecture 1 ([4]). For all positive integers k, m, there is a (least) non-negative integer $f_k(m)$ such that every k-connected graph G with $\delta(G) \ge \lfloor \frac{3}{2}k \rfloor - 1 + f_k(m)$ contains a connected subgraph W of exact order m such that G - V(W) is still k-connected.

They also gave examples in [4] showing that $f_k(m)$ must be at least m for all positive integers k, m. In [5], Mader proved that $f_k(m)$ exists and $f_k(m) = m$ holds for all k, m.

Theorem 1.2 ([5]). Every k-connected graph G with $\delta(G) \ge \lfloor \frac{3}{2}k \rfloor + m - 1$ for positive integers k, m contains a path P of order m such that G - V(P) remains k-connected.

 $\stackrel{\textrm{\tiny{(x)}}}{\to}$ The research is supported by NSFC (Nos. 11401510, 11531011) and NSFXJ (No. 2015KL019). * Corresponding author.

E-mail addresses: tianyzhxj@163.com (Y. Tian), mjx@xju.edu.cn (J. Meng), hjlai@math.wvu.edu (H.-J. Lai), 200661000016@jmu.edu.cn (L. Xu).

https://doi.org/10.1016/j.disc.2017.10.017 0012-365X/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: Y. Tian, et al., Connectivity keeping stars or double-stars in 2-connected graphs, Discrete Mathematics (2017), https://doi.org/10.1016/j.disc.2017.10.017.

2

ARTICLE IN PRESS

Y. Tian et al. / Discrete Mathematics 🛛 (💵 💷)

In the same paper, Mader [5] asked whether the result is true for any other tree *T* instead of a path, and gave the following conjecture.

Conjecture 2 ([5]). For every positive integer k and every finite tree T, there is a least non-negative integer $t_k(T)$, such that every k-connected, finite graph G with $\delta(G) \ge \lfloor \frac{3}{2}k \rfloor - 1 + t_k(T)$ contains a subgraph $T' \cong T$ with $\kappa(G - V(T')) \ge k$.

Mader showed that $t_k(T)$ exists in [6].

Theorem 1.3 ([6]). Let G be a k-connected graph with $\delta(G) \ge 2(k - 1 + m)^2 + m - 1$ and let T be a tree of order m for positive integers k, m. Then there is a tree T' \subseteq G isomorphic to T such that G - V(T') remains k-connected.

Mader further conjectured that $t_k(T) = |T|$.

Conjecture 3 ([5]). For every positive integer k and every tree T, $t_k(T) = |T|$ holds.

Theorem 1.2 showed that Conjecture 3 is true when *T* is a path. Diwan and Tholiya [3] proved that the conjecture holds when k = 1. In the next section, we will verify that Conjecture 3 is true when *T* is a star and k = 2. It is proved in the last section that Conjecture 3 is true when *T* is a double-star and k = 2.

A *block* of a graph *G* is a maximal connected subgraph of *G* that has no cut vertex. Note that any block of a connected graph of order at least two is 2-connected or isomorphic to K_2 .

For a vertex subset *U* of a graph *G*, *G*[*U*] denotes the subgraph induced by *U* and *G*−*U* is the subgraph induced by *V*(*G*)−*U*. The *neighborhood* $N_G(U)$ of *U* is the set of vertices in V(G) - U which are adjacent to some vertex in *U*. If $U = \{u\}$, we also use G - u and $N_G(u)$ for $G - \{u\}$ and $N_G(\{u\})$, respectively. The *degree* $d_G(u)$ of *u* is $|N_G(u)|$. If *H* is a subgraph of *G*, we often use *H* for V(H). For example, $N_G(H)$, $H \cap G$ and $H \cap U$ mean $N_G(V(H))$, $V(H) \cap V(G)$ and $V(H) \cap U$, respectively. If there is no confusion, we always delete the subscript, for example, d(u) for $d_G(u)$, N(u) for $N_G(u)$, N(U) for $N_G(U)$ and so on. A *tree* is a connected graph without cycles. A *star* is a tree that has exact one vertex with degree greater than one. A *double-star* is a tree that has exact two vertices with degree greater than one.

2. Connectivity keeping stars in 2-connected graphs

Theorem 2.1. Let *G* be a 2-connected graph with minimum degree $\delta(G) \ge m + 2$, where *m* is a positive integer. Then for a star *T* with order *m*, *G* contains a star *T'* isomorphic to *T* such that G - V(T') is 2-connected.

Proof. If $m \leq 3$, then *T* is a path, and the theorem holds by Theorem 1.2. Thus we assume $m \geq 4$ in the following.

Since $\delta(G) \ge m+2$, there is a star $T' \subseteq G$ with $T' \cong T$. Assume $V(T') = \{u, v_1, \ldots, v_{m-1}\}$ and $E(T') = \{uv_i | 1 \le i \le m-1\}$. We say T' is a star rooted at u or with root u. Let G' = G - T'. Let B be a maximum block in G' and let l be the number of components of G' - B. If l = 0, then B = G' is 2-connected. So we may assume that $l \ge 1$. Let H_1, \ldots, H_l be the components of G' - B with $|H_1| \ge \cdots \ge |H_l|$.

Take such a star T' so that

(P1) |B| is as large as possible,

 $(P2)(|H_1|, \ldots, |H_l|)$ is as large as possible in lexicographic order, subject to (P1).

We will complete the proof by a series of claims.

Claim 1. $|N(H_i) \cap B| \le 1$ and $|N(H_i) \cap V(T')| \ge 1$ for each $i \in \{1, ..., l\}$.

Since *B* is a block of *G'*, we have $|N(H_i) \cap B| \le 1$ for each $i \in \{1, ..., l\}$. Since *G* is 2-connected, $|N(H_i) \cap V(T')| \ge 1$ for each $i \in \{1, ..., l\}$.

Claim 2. *l* = 1.

Assume $l \ge 2$. By Claim 1, there is an edge *th* between T' and H_1 , where $t \in T'$ and $h \in H_1$. Choose a vertex $x \in H_l$. Since $\delta(G) \ge m + 2$ and $|N(H_l) \cap B| \le 1$ (by Claim 1), we have $|N(x) \setminus (B \cup \{t\})| \ge m + 2 - 1 - 1 = m$. Thus we can choose a star $T'' \cong T$ with root *x* such that $V(T'') \cap (B \cup \{t\}) = \emptyset$. But then either there is a larger block than *B* in G - T'', or G - T'' - B contains a larger component than $H_1(H_1 \cup \{t\})$ is contained in a component of G - T'' - B, which contradicts to (P1) or (P2).

Claim 3. $|N(t) \cap B| \le 1$ and $|N(t) \cap H_1| \ge 2$ for any vertex $t \in V(T')$.

Assume $|N(t) \cap B| \ge 2$. Choose a vertex $x \in H_1$. Since $\delta(G) \ge m + 2$ and $|N(H_1) \cap B| \le 1$, we have $|N(x) \setminus (B \cup \{t\})| \ge m + 2 - 1 - 1 = m$. Thus we can choose a star $T'' \cong T$ with root x such that $V(T'') \cap (B \cup \{t\}) = \emptyset$. But G - T'' has a block containing $B \cup \{t\}$ as a subset, which contradicts to (P1). Thus $|N(t) \cap B| \le 1$ holds. By $d(t) \ge m + 2$ and $|N(t) \cap B| \le 1$, we have $|N(t) \cap H_1| = d(t) - |N(t) \cap B| - |N(t) \cap T'| \ge m + 2 - 1 - (m - 1) = 2$.

Claim 4. For any edge $t_1t_2 \in E(T')$, $|N(\{t_1, t_2\}) \cap B| \le 1$ holds.

Please cite this article in press as: Y. Tian, et al., Connectivity keeping stars or double-stars in 2-connected graphs, Discrete Mathematics (2017), https://doi.org/10.1016/j.disc.2017.10.017.

Download English Version:

https://daneshyari.com/en/article/8903066

Download Persian Version:

https://daneshyari.com/article/8903066

Daneshyari.com