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a b s t r a c t

An r-gentiling is a dissection of a shape into r ≥ 2 parts which are all similar to the original
shape. An r-reptiling is an r-gentiling of which all parts are mutually congruent. The
complete characterization of all reptile tetrahedra has been a long-standing open problem.
This note concerns acute tetrahedra in particular. We find that no acute tetrahedron is an
r-gentile or r-reptile for any r < 10. The proof is based on showing that no acute spherical
diangle can be dissected into less than ten acute spherical triangles.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a closed set of points in Euclidean spacewith a non-empty interior.We call T an r-gentile if T admits an r-gentiling,
that is, a subdivision of T into r ≥ 2 sets (tiles) T1, . . . , Tr , such that each of the sets T1, . . . , Tr is similar to T . In other words,
T is an r-gentile if we can tile it with r smaller copies of itself. This generalizes the concept of reptiles, coined by Golomb [6]:
a set T is an r-reptile if T admits an r-reptiling, that is, a subdivision of T into r ≥ 2 sets T1, . . . , Tr , such that each of the sets
T1, . . . , Tr is similar to T and all sets T1, . . . , Tr are mutually congruent under translation, rotation and/or reflection. In other
words, T is an r-reptile if we can tile it with r equally large, possibly reflected, smaller copies of itself. Interest in reptile
tetrahedra (or triangles, for that matter) exists, among other reasons, because of their application in meshes for scientific
computing [1,10]. In this realm techniques such as reptile-based stack-and-stream are well-developed in two dimensions,
but three-dimensional space poses great challenges [1].

It is knownwhat triangles are r-reptiles [13] and r-gentiles [4,9] for what r . However, for tetrahedra the situation ismuch
less clear; in fact the identification of reptile and gentile tetrahedra and, evenmore general, of tetrahedra that tile space, has
been a long-standing open problem [12].

The regular tetrahedron does not tile space, as its dihedral angles are arccos(1/3), which is larger than 2π/6 but slightly
smaller than 2π/5, so that no number of regular tetrahedra can fill the space around a common edge. Goldberg described all
known tetrahedra that do tile space [5]. Delgado Friedrichs and Huson characterize all tetrahedra that produce tile-transitive
tilings [2], but to the best of my knowledge, without the restriction to tile-transitive tilings the problem of identifying all
space-filling tetrahedra is still open.

The reptile tetrahedra must be a subset of the tetrahedra that tile space. Matoušek and Safernová argued that r-reptilings
with tetrahedra exist if and only if r is a cubenumber [11]. In particular, it is known that all so-calledHill tetrahedra (attributed
to Hill [8] by Hertel [7] and Matoušek and Safernová [11]) are 8-reptiles. It has been conjectured that the Hill tetrahedra
are the only reptile tetrahedra [7], but this conjecture is false: Sommerville found two non-Hill tetrahedra that tile three-
dimensional space [14] and which were recognized as 8-reptiles by Liu and Joe [10]. To the best of my knowledge, the Hill
tetrahedra and the two non-Hill tetrahedra from Liu and Joe are the only tetrahedra known to be reptiles, but there might
be others. This paper provides a small contribution to the answer to the question: exactly what tetrahedra are reptiles?
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In mesh construction applications one typically needs to enforce certain quality constraints on the mesh elements. This
has motivated studies into acute tetrahedra [3]:

Definition 1. A tetrahedron is acute if each pair of its facets has a dihedral angle strictly less than π/2.

All facets of an acute tetrahedron are acute triangles themselves (Eppstein et al. [3], Lemma 2). The Hill tetrahedra, as
well as the two non-Hill tetrahedra from Liu and Joe, all have right dihedral angles.1 Thus, no acute reptile tetrahedra are
known.

2. Results

In this notewewill prove the following statement, whichmay serve as evidence that acute reptile tetrahedra are probably
hard to find, if they exist at all:

Theorem 1. Let T be an acute tetrahedron subdivided into r ≥ 2 acute tetrahedra T1, . . . , Tr . If the diameter (longest edge) of
each tetrahedron Ti is smaller than the diameter (longest edge) of T , then r ≥ 10.

In particular we get:

Corollary 1. No acute tetrahedron is an r-gentile for any r < 10.

With the result from Matoušek and Safernová that r-reptile tetrahedra can only exist when r is a cube number [11], we
get:

Corollary 2. No acute tetrahedron is an r-reptile for any r < 27.

3. The proof

Note that if a tetrahedron T is subdivided into tetrahedra T1, . . . , Tr with smaller diameter than T , then at least one
tetrahedron Ti, for some i ∈ {1, . . . , r}, must have a vertex v on the longest edge of T . For the proof of Theorem 1 we analyse
Sv , the subdivision of an infinitesimal sphere around v that is induced by the facets of T and T1, . . . , Tr . In such a subdivision,
we find:

• faces: each face is either a spherical triangle, corresponding to a tetrahedron Ti of which v is a vertex, or a spherical
diangle (also called lune), corresponding to a tetrahedron that has v on the interior of an edge;

• edges: the edges of Sv are segments of great circles and correspond to facets of T1, . . . , Tr that contain v; the angle
between two adjacent edges on a face of Sv corresponds to the dihedral angle of the corresponding facets of a
tetrahedron Ti.

• vertices: each vertex of Sv corresponds to an edge of a tetrahedron Ti that contains v.

Thus, Sv consists of a spherical diangle D corresponding to T , subdivided into a number of spherical triangles, and possibly
some spherical diangles, that correspond to the tetrahedra from T1, . . . , Tr that touch v. Below we will see that Sv must
contain at least ten faces (not counting the outer face, that is, the complement of D), which proves Theorem 1.

In what follows, when we talk about diangles and triangles, we will mean acute, spherical diangles and acute, spherical
triangles on a sphere with radius 1. Note that the faces are diangles or triangles in the geometric sense, but they may have
more than two or three vertices on their boundary.More precisely, a diangle or triangle has, respectively, exactly two or three
vertices, called corners, where its boundary has an acute angle, and possibly a number of other vertices where its boundary
has a straight angle. A chain of edges of a diangle or triangle from one corner to the next is called a side. Note that Sv contains
at least one triangle, since v is a vertex of at least one tetrahedron Ti. Therefore, in what follows we consider a subdivision
S of a diangle D into a number of diangles and triangles, among which at least one triangle. We call such subdivisions valid.
Henceforth, we will assume that S has the smallest number of faces out of all possible valid subdivisions of all possible
diangles D. Our goal is now to prove that S contains at least ten faces.

1 One of the non-Hill tetrahedra can be given (modulo similarity transformations) by A = (−1, 0, 0), B = (0, 1, 0), C = (1, 0, 0), D = (0, 0,
√
1/2); the

second type of non-Hill tetrahedron is obtained by cutting the first type along the yz-plane. Both types have right dihedral angles along the x-axis. Any Hill
tetrahedron can be described as the convex hull of four vertices A = 0, B = v1 , C = v1 + v2 and D = v1 + v2 + v3 , such that the vectors v1 , v2 and v3
have the same length and such that the angle between each pair of these vectors is the same, say α [11]. For ease of notation, assume that the tetrahedron
is scaled, rotated and reflected such that v1 , v2 and v3 have length

√
2, the vertex C = v1 + v2 lies on the positive x-axis, and the vertex B = v1 lies in the

first quadrant of the xy-plane. We use t to denote cosα. Note that we have t < 1, otherwise we would have α = 0, all vertices would lie on a single line,
and they would not be the vertices of a tetrahedron. The condition on the angles of the vectors can now be written as v1 · v2 = v1 · v3 = v2 · v3 = 2t .
Thus we must have v1 = (a, b, 0) and v2 = (a, −b, 0) with a =

√
1 + t and b =

√
1 − t > 0, so that indeed, ∥v1∥ = ∥v2∥ =

√
a2 + b2 =

√
2 and

v1 · v2 = a2 − b2 = 2t . The vector v3 = (x, y, z) must now satisfy v1 · v3 = v2 · v3 ⇔ ax + by = ax − by, which, given b ̸= 0, solves to y = 0, and we
get D = v1 + v2 + v3 = (2a + x, 0, z). Thus, the face ABC lies in the xy-plane and the face ACD lies in the xz-plane, and these faces meet at a right dihedral
angle along the x-axis.
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