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a b s t r a c t

An orthogonally resolvable matching design OMD(n, k) is a partition of the edges of the
complete graph Kn into matchings of size k, called blocks, such that the blocks can be
resolved in two different ways. Such a design can be represented as a square array whose
cells are either empty or contain a matching of size k, where every vertex appears exactly
once in each row and column. In this paper we show that an OMD(n, k) exists if and only if
n ≡ 0 (mod 2k) except when k = 1 and n = 4 or 6.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We assume that the reader is familiar with the general concepts of graph theory and design theory, and refer them
to [3,12]. In particular, the Lexicographic product of a graph Gwith a graph H , denoted G[H], is defined as the graph on vertex
set V (G) × V (H) with (uG, uH )(vG, vH ) ∈ E(G[H]) if uGvG ∈ E(G), or uG = vG and uHvH ∈ E(H). In the case where H is the
empty graph on w points, we denote the lexicographic product G[H] by G[w]. We use Kn to denote the complete graph on n
vertices and thus Kn[w] is the complete multipartite graph with n parts of size w. Also, amatching on 2k vertices is denoted
Mk and is defined as a set of k disjoint edges.

Given two graphs G and H , a G-decomposition of H is a partition of the edges of H into graphs isomorphic to G, called
blocks. The most studied case is when H is the complete graph, in which case we call a G-decomposition of H a G-design. A
resolution class of a G-decomposition of H is a set of blocks which partitions the point set. A G-decomposition of H is called
resolvable if the set of all blocks can be partitioned into resolution classes. In this case each point appears in the same number
of blocks and we call this the replication number and denote it by r . A resolvable G-decomposition of H is also referred to as
a G-factorization of H and a single class as a G-factor of H . We note that each factor is a spanning subgraph of H .

If a G-decomposition of H has two resolutions such that the intersection between any class from one resolution with
any class from the other is at most one block, then the decomposition is orthogonally resolvable, sometimes called doubly
resolvable. An orthogonally resolvable G-decomposition of H can be represented by an r × r array, where each cell is either
empty or contains a block of the decomposition. Each row and each column is a resolution class and thus contains each point
exactly once.

The simplest case of a G-decomposition of H is when G is a single edge K2 ∼= M1. A resolvable M1-decomposition is also
known as a 1-factorization, which are well studied, see [11]. In particular it is well known that a 1-factorization of Kn exists
if and only if n is even and a 1-factorization of Kn,n ∼= K2[n] ∼= M1[n] exists for all n ∈ Z+.

The study of orthogonal resolutions of designs has a long history. An orthogonal 1-factorization is called a Room square,
after T. G. Room [10] who studied them in the 1950s. However, the study of Room squares goes back to the original work of
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Kirkman in 1847 [7], where he presents a Room square of order 8. The existence of Room squares was finally settled in 1975
by Mullin and Wallis [9]; for a survey on Room squares see [5].

Orthogonally resolvable K3-Designs are known as Kirkman squares, and have been well studied, see for example [2,4,6,8].
In particular, Mathon and Vanstone [8] showed the non-existence of a Kirkman square of orders n = 9 and 15; the existence
of Kirkman squares was settled by Colbourn, Lamken, Ling and Mills in [4], with 23 possible exceptions, 11 of which were
solved in [6]. Another generalization of G-designs that has been considered is when G is an n-cycle, see [1].

Decompositions of other graphs have also been considered, for example it is easy to see that an orthogonal 1-factorization
of K2[n] is equivalent to a pair of mutually orthogonal Latin squares, which are well known to exist for all n ̸= 2, 6.

In this paper we consider orthogonally resolvable Mk-decompositions and designs. An orthogonally resolvable Mk-
decomposition of G is denoted OMD(G, k), and when G = Kn we write OMD(n, k). We can also define these decompositions
in terms of the corresponding square r × r array.

Definition 1.1. An OMD (n, k) is defined as a decomposition of Kn into two orthogonal resolutions with blocks that are
isomorphic toMk.

We can also define such a decomposition in terms of a square r × r array such that:

1. Each cell is either empty or contains a copy ofMk, where Mk is the matching on k edges.
2. Each row R and each column S contains each element of V (Kn) exactly once.
3. Every pair x, y ∈ V (Kn) occurs together as an edge of one of theMk exactly once.

A consequence of conditions 1, 2 and 3 is that r = n− 1, as well as the following necessary condition for the existence of
any OMD(n, k), which comes from counting the edges and vertices of Kn and Mk.

Lemma 1.2. An OMD(n, k) exists only if n ≡ 0 (mod 2k).

Roomsquares are thusOMD(n, 1) andwe state the result ofMullin andWallis in the following theoremusing the language
of OMDs.

Theorem 1.3 ([9]). An OMD(n, 1) exists if and only if n is even and n ̸= 4, 6.

In the next section we consider some small cases and then we provide a recursive construction and prove our main
theorem, which we state here.

Theorem 1.4. There exists an OMD(n, k) if and only if n ≡ 0 (mod 2k) except when k = 1 and n = 4 or 6.

2. Small cases

In this sectionwe consider some of the ingredientswewill need aswell as OMD(mk, k) for small values ofm.We generally
work on the corresponding r × r array, where the rows and columns are indexed by Zr . We begin by defining some terms
that we will find useful.

Definition 2.1. A transversal of an OMD(n, k) is a set of r cells, which contains exactly one cell from each row and one cell
from each column, such that each point appears exactly once in one of the cells.

We note that in general a transversal will contain empty cells. For example, in an OMD(2n, 1) a transversal will have n
non-empty cells.

Definition 2.2. We say that an OMD(n, k) has a hole of sizem if it contains a square subarray of sidem which is empty.

Lemma 2.3. There exists an OMD(M1[k], k) for all k ∈ Z+.

Proof. Note thatM1[k] ∼= Kk,k and each 1-factor of Kk,k is isomorphic toMk. We obtain the design by placing the 1-factors of
a 1-factorization of Kk,k down the diagonal of the square. □

Lemma 2.4. There exists an OMD(2k, k) with a transversal and a hole of size k − 1 for all k ∈ Z+.

Proof. Wenote that each 1-factor ofK2k is isomorphic toMk.We obtain the design by placing the 1-factors of a 1-factorization
of K2k down the diagonal of the square. The back diagonal (2k − 2 − i, i), 0 ≤ i < 2k − 1, is a transversal, with i = k − 1
being the only non-empty cell. Further, the upper right (k − 1) × (k − 1) subarray is empty. □

Lemma 2.5. There exists an OMD(4k, k) for all k > 1.
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