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a b s t r a c t

Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due,
in various parts, to Kahn, Galvin–Tetali, and Zhao) that the independence polynomial of a
d-regular graph is maximized by disjoint copies of Kd,d. Their proof uses linear program-
ming bounds on the distribution of a cleverly chosen random variable. In this paper, we use
this method to give lower bounds on the independence polynomial of regular graphs. We
also give a new bound on the number of independent sets in triangle-free cubic graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Extremal problems involving the number of substructures of a graph of a given type have popped up in quite a few
different contexts of late. One of the best known such results is due to Kahn [6] and Zhao [11]. We let Ind(G) be the set of
independent sets in a graph G. Their theorem bounds ind(G) = |Ind(G)| for regular graphs.

Theorem 1 (Kahn, Zhao). If G is a d-regular graph on n vertices, then

ind(G)1/n ≤ ind(Kd,d)1/2d.

One source for questions of this type is the field of statistical mechanics. For instance, the hard-core model on a graph G is
a probability distribution on the independent sets of G in which a independent set I is chosen with probability proportional
to λ|I|. Here λ > 0 is a parameter called the fugacity. The normalizing factor is

PG(λ) =

∑
I∈Ind(G)

λ|I|,

known to graph theorists as the independence polynomial of G and to statistical physicists as the partition function of this
hard-core model.

Kahn [6] in fact proved the analogue of Theorem 1 for the independence polynomial of bipartite graphs with fugacity
λ ≥ 1, i.e.,

PG(λ)1/n ≤ PKd,d (λ)
1/2d.

Galvin and Tetali [5] extended Kahn’s result to cover the case 0 < λ < 1. Finally, Zhao [11] proved the full theorem using a
clever lifting argument.
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More recently, Davies, Jenssen, Perkins, and Roberts [3] gave an independent proof introducing an audacious new
approach utilizing linear programming. Following Davies et al., we will derive bounds on PG(λ) by considering the occupancy
fraction, denotedαG(λ). This is the expected fraction of vertices ofG belonging to a random independent set chosen according
the hard-core model. More explicitly,

αG(λ) =
1
n

∑
I∈Ind(G)|I|λ

|I|

PG(λ)
=

1
n

λP ′

G(λ)
PG(λ)

.

Davies et al. [3] proved the following.

Theorem 2 (Davies, Jenssen, Perkins, Roberts). For all d-regular graphs G and all λ > 0, it is the case that

αG(λ) ≤ αKd,d (λ).

Because αG(λ) is essentially the logarithmic derivative of PG(λ), this is a strengthening of Theorem 1. The proof of
Theorem 3 below shows how to use the occupancy fraction to bound the independence polynomial.

In this paper, we investigate lower bound analogues of Theorem 2. In Section 2, we give an example of the linear
programming method by proving that for any d-regular graph, the occupancy fraction is bounded below by that of Kd+1.
As pointed out by Davies et al. [4], this result can also be deduced from the proof for the lower bound on ind(G) in graphs
with maximum degree at most d proved by the authors in [2].

In the final section, we discuss a problem raised by Kahn [7], that of giving a lower bound on PG(λ) for d-regular triangle-
free graphs. We use the same occupancy fraction approach to give bounds in this case. In Zhao’s lovely survey article on this
area [12, Problem 9.5], he proposes to study the general problem of finding the infimum and supremum of ind(G)1/n(G) over
d-regular graphs not satisfying a given excluded subgraph condition.

When λ is large, the hard-core model is biased strongly towards large independent sets. Indeed,

lim
λ→∞

αG(λ) =
α(G)
n

, (1)

where α(G) is the independence number of G, and the ratio α(G)/n is the independence ratio of G. In Section 3, we focus on
triangle-free cubic graphs. Here we are able to give a bound that is relatively good when λ = 1. We conjectured that the
Petersen graph is extremal when λ = 1, which was recently proved by Perarnau and Perkins [8]. Indeed, they prove that the
occupancy fraction for cubic triangle-free graphs is minimized by the Petersen graph for 0 < λ ≤ 1. This cannot be extended
to all λ since the independence ratio for triangle-free cubic graphs is minimized by GP(7, 2), a generalized Petersen graph
(see Staton [10]). In fact, we conjecture that for any λ, PG(λ) is minimized by either the Petersen graph or the generalized
Petersen graph.

2. Lower bounds for the hard-core model on regular graphs

In this section, we present a proof of a best possible lower bound on the occupancy fraction for d-regular graphs. The
proof we give serves as an introduction to the linear programming method of Davies et al. [3]. In a subsequent paper, Davies
et al. [4] observe that this result follows relatively straightforwardly from a result of the current authors in [2]. Our proof
appears at the end of this section after a number of lemmas concerning the linear programming approach.

Theorem 3. If G is a d-regular graph on n vertices and λ > 0, then

αG(λ) ≥ αKd+1 (λ).

As a consequence, we have

PG(λ)1/n ≥ PKd+1 (λ)
1/(d+1).

Equality is, in both cases, only achieved for G a disjoint union Kd+1s.

Following Davies et al. [3], we will consider, for each vertex in V , the probability that it belongs to, and the probability
that it is covered by, a randomly chosen independent set. To be explicit, if I is an independent set, we say that v ∈ V (G)
is occupied if v ∈ I and uncovered if I ∩ N(v) = ∅. If I is distributed according to the hard-core model, we write pv for
P(v ∈ I) and qv for P(vis uncovered). Note that both pv and qv are functions of λ. Also, it is the case that pv ≤ qv since
{I ∈ Ind(G) : v is occupied} ⊆ {I ∈ Ind(G) : v is uncovered}.

Lemma 4. In the hard-core model on G with fugacity λ > 0, we have

(1) pv =
λ

1+λ
qv , and

(2) αG(λ) =
1
n

∑
v∈V (G)

pv .
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