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a b s t r a c t

Let M(G) denote the set of all maximal matchings in a simple graph G, and f : M(G) →

{0, 1}|E(G)| be the characteristic function of maximal matchings of G. Any set S ⊆ E(G) such
that f |S is an injection is called a global forcing set for maximal matchings in G, and the
cardinality of smallest such S is called the global forcing number for maximal matchings
of G. In this paper we establish sharp lower and upper bounds on this quantity and prove
explicit formulas for certain classes of graphs. At the end,we also state some open problems
and discuss some further developments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The concept of forcing set is one of many graph-theoretical concepts whose origins can be traced back to the study
of resonance structures in mathematical chemistry where it was introduced under the name of the innate degree of
freedom [10,12]. Later it attracted significant attention also in purely graph-theoretical literature [1,2,14,15,23]. The forcing
sets were first defined locally, with reference to particular Kekulé structures (or perfect matchings in mathematical
literature), and global results were obtained by considering extremal values over the set of all relevant structures. Then
the focus shifted to the study of forcing sets that were defined globally in a graph, motivated by the need to efficiently code
andmanipulate perfect matchings in large-scale computations [19,20]. It turned out that many results could be successfully
transferred from the local to the global context. In particular, explicit formulas for the global forcing number for some
benzenoid graphs, rectangular and triangular grids and complete graphs were obtained by some of the present authors
[5,16,18,21].

Instrumental in obtaining those results were the elements of well-developed structural theory available for perfect
matchings. No such theory, however, exists for much less researched but still very useful and interesting class of large
matchings, known as maximal matchings. Hence, we were unable to simply transfer the above results when a need for
analogous concepts arose in course of our work on maximal matchings. The aim of this paper is to fill the gap by extending
the concepts of global forcing set and global forcing number also to maximal matchings and to obtain results analogous to
those mentioned for the perfect matching case.

The paper is organized as follows. In the next section we define the terms relevant for our subject and present some
preliminary results. Section 3 contains some lower bounds on the global forcing number and also a monotonicity results
used later. Sections 4 and 5 present results on trees and complete graphs, respectively, while in Section 6we present bounds
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for graphs of a given cyclomatic number. Finally, in the concluding sectionwe comment on some open problems and indicate
some possible directions for future research.

2. Definitions and preliminary results

All graphs in this paper are tacitly supposed to be simple and connected unless explicitly stated otherwise. Let G be a
graphwith set of vertices V (G) and set of edges E(G).Wewill denote by n = |V (G)| the number of vertices and bym = |E(G)|
the number of edges in G. As usual, the path, the star, and the complete graph on n vertices are denoted by Pn, Sn and Kn,
respectively.

Let G be a graph and H be any subgraph of G. We denote by G−H the graph obtained by deleting from G all vertices of H
and all edges incident with them. If S is a set of edges of G, then G− S denotes the graph obtained from G by removing edges
from S without removing their end-vertices. We reserve notation S \ M for the set difference of two sets of edges.

A connected graphG is acyclic or a tree ifG does not contain cycles. IfG contains exactly one cycle, we sayG is anunicyclic
graph. Finally, for any graph G we define its cyclomatic number c(G) by c(G) = |E(G)| − |V (G)| + 1. That is the smallest
number of edges one must remove from a graph to obtain a tree. If G is a tree, then c(G) = 0, and if G is an unicyclic graph,
then c(G) = 1. A vertex u in a graph G is a leaf if u has exactly one neighbor. The only neighbor of a leaf in G is called a petal.

A matching in a graph G is any set of edges M ⊆ E(G) such that every vertex in G is incident with at most one edge
from M . The number of edges in M is called its size. Matchings of small size are quite uninteresting, since they are easy to
construct and enumerate. On the other hand, ‘‘large’’matchings serve asmodels formany problems inwhichwehave entities
capable of interactions over a given connection pattern.Whenever one neighbor canmonopolize all interaction capability of
an entity, rendering it unavailable for its other neighbors, matchings naturally appear, and existence of ‘‘large’’ matchings is
usually desirable as it signals good efficiency of the underlying process. Hence, we are interested in study of largematchings.

A matching M is maximum if there is no matching in G of a greater size. The cardinality of any maximum matching in
G is called the matching number of G and denoted by ν(G). Since each edge of a matching saturates two vertices of G, no
matching in G can have size greater than ⌊n/2⌋. We say that a matchingM is perfect if every vertex from G is incident with
exactly one edge fromM . Obviously, only graphs on an even number of vertices can have perfect matchings. If a graph G on
an odd number of vertices has ν(G) = ⌊n/2⌋, we say that G has an almost perfect matching.

Another way of measuring how large is a given matching is based on (im)possibility of its extension to a larger matching.
We say that matchingM ismaximal if there is no matchingM ′ in G such thatM ⊂ M ′. Note that every maximummatching
in G is alsomaximal, but the opposite is, in general, not true. Maximalmatchings usually come in different sizes. The smallest
size of a maximal matching in G is called the saturation number of G and denoted by s(G). The largest size is, of course, the
matching number ν(G). If all maximal matchings in G are of the same size (and hencemaximum), graph G is equimatchable.

There is a marked asymmetry in the way maximum and maximal matchings are studied and represented in the
literature. While the maximum (and in particular perfect) matchings are well researched and understood (see, for example,
monographs [13] and [4]), results on their maximal counterparts are much less abundant. We mention here some papers
dealing with maximal matchings in trees [11,22], with equimatchable graphs [8,9], and two recent papers coauthored by
one of the present authors about structural and enumerative aspects of maximal matchings in linear polymers [6,7]. One of
possible reasons for the scarcity of results might be that, at themoment, there is no structural theory for maximal matchings
analogous to the one available for maximummatchings.

Any non-maximal matching can be extended to a maximal matching. In particular, for any edge e ∈ E(G) there is a
maximal matching M containing e. This stands in sharp contrast with the situation for perfect matchings, where such
property (1-extendability) imposes strong structural conditions on G. The idea of finding a subset of a perfect matching
which is in a unique way extendable to the whole matching gave rise to the concept of forcing set.

For a given perfect matchingM in G, its forcing set is defined as any subset ofM that is not contained in any other perfect
matching of G. The forcing number of a perfect matching M was defined as the size of any smallest forcing set of M . Note
that forcing sets and numbers are defined for each perfect matching of G. The idea was generalized to global setting in two
different ways. One was to study extremal forcing sets and forcing numbers over all perfect matchings; the other was to
look for subsets of edges of G, not necessarily matchings, such that no two perfect matchings coincide on them. The later
approach gave rise to the concept of global forcing sets and numbers for perfect matchings. Now we extend the idea also to
maximal matchings.

A global forcing set formaximalmatchings of a graph G is any set S ⊆ E(G) such thatM1
⏐⏐
S ̸= M2

⏐⏐
S for any twomaximal

matchings M1 and M2. Any global forcing set for maximal matchings in G of the smallest cardinality is called a minimum
global forcing set and its cardinality, denoted by ϕgm(G), is called the global forcing number for maximal matchings in G.
Throughout the rest of the paper we will say only global forcing set (or number) of graph G tacitly assuming it is a global
forcing set (or number) for maximal matchings in G unless explicitly stated otherwise.

Global forcing sets in a given graph G have an obvious monotonicity property.

Proposition 1. If S ⊂ E(G) is a global forcing set, then each S ′
⊃ S is also a global forcing set. If S ⊂ E(G) is not a global forcing

set, then no S ′
⊂ S can be a global forcing set.



Download English Version:

https://daneshyari.com/en/article/8903095

Download Persian Version:

https://daneshyari.com/article/8903095

Daneshyari.com

https://daneshyari.com/en/article/8903095
https://daneshyari.com/article/8903095
https://daneshyari.com

