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a b s t r a c t

Let G be a graph without isolated edges, and let c : E(G) → {1, . . . , k} be a coloring of
the edges, where adjacent edges may be colored the same. The color code of a vertex v is
the ordered k-tuple (a1, a2, . . . , ak), where ai is the number of edges incident with v that
are colored i. If every two adjacent vertices of G have different color codes, such a coloring
is called multi-set neighbor distinguishing. In this paper, we prove that three colors are
sufficient to produce a multi-set neighbor distinguishing edge coloring for every graph
without isolated edges.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let V (G) and E(G) denote the vertex set and the edge set of a
graph G, respectively. Let N(v) denote the set of neighbors of a vertex v and d(v) denote the degree of v. A dominating set S
of a graph G is a set of vertices such that each vertex of V (G) is either in the set S or is adjacent in G to a vertex of S. A set of
vertices is independent if no two vertices in the set are adjacent. For a subset S of V (G), the subgraph G[S] of G induced by S
has S as its vertex set and two vertices of S are adjacent in G[S] if and only if they are adjacent in G. For notation not defined
here, we refer the reader to [2].

A graph G is normal if it contains no isolated edges. Let G be a normal graph, and let c : E(G) → {1, . . . , k} be a coloring of
the edges, where adjacent edges may be colored the same. If c uses k colors we say that c is a k-edge coloring. The color code
of a vertex v is the ordered k-tuple code(v) = (a1, . . . , ak), where ai is the number of edges incident with v that are colored i.
Thus

∑k
i=1ai = d(v). If every two adjacent vertices of a graph G have different color codes, such a coloring is calledmulti-set

neighbor distinguishing. Since a graph that contains isolated edges does not accept such a coloring, we only consider normal
graphs.

Karoński, Łuczak, and Thomason proved in [3] that if a normal graph G has chromatic number at most 3, it is possible to
color the edges with the colors 1, 2 and 3, so that for every two adjacent vertices u and v of G, the sum of the colors of the
edges incident with u is different from the sum of the colors of the edges incident with v. This implies that for an arbitrary
normal graph Gwith chromatic number at most 3, three colors are sufficient to produce a multi-set neighbor distinguishing
edge coloring. The best result concerning an arbitrary normal graph stating that four colors are sufficient to produce such a
coloring was proved by Addario-Berry et al. in [1]. We improve this result in Theorem 1 by showing that, in fact, three colors
are sufficient.

Theorem 1. For every normal graph G, there exists a multi-set neighbor distinguishing 3-edge coloring of G.

Note that, in general case, three colors are necessary. There are many graphs that do not allow a multi-set neighbor
distinguishing edge coloring with less than three colors. Examples of such graphs are Kn when n ≥ 3, and Cn when n ≥ 3
and n ̸≡ 0 mod 4.
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If the colors of some of the edges incident with v are left unassigned, a color code that includes the number of already
colored edges incident with v is called a partial color code, and we denote it by codep(v). In order to prove Theorem 1, we
need the following lemma.

Lemma 2. Let G be an induced subgraph of a graph H, where G is a connected bipartite graph with partite sets V1 and V2. Let
there be given a partial edge coloring φ of H with arbitrary colors assigned to every edge uv with u ∈ V (G) and v ∈ V (H) \ V (G).
Then, for arbitrary v ∈ V1, there exists an extension of the coloring φ such that all the edges of G are assigned colors from {a, b}
and all the vertices of V1 \ {v} have in H an even (odd) number of incident edges colored a, while all the vertices of V2 have in H
an odd (even, respectively) number of incident edges colored a.

Proof. First, we color all the edges of Gwith the color a. While there exist two or more vertices in V1 \ {v} that are incident
with an odd number of edges colored a, we do the following. Let w1 and w2 be two such vertices. We interchange the colors
a and b for every edge on a path betweenw1 andw2 in G. This way the parity of the number of edges incident withw1 andw2
colored a is changed, while the parity of the number of edges colored a incident with any other vertex of G stays the same.
At the end of this procedure, there is at most one vertex in V1 \ {v} that has an odd number of incident edges colored a. Next,
while there exist two or more vertices in V2 that are incident with an even number of edges colored a, we do the following.
Let u1 and u2 be two such vertices. We interchange the colors a and b for every edge on a path between u1 and u2 in G. At
the end of this procedure there is at most one vertex in V2 that has an even number of incident edges colored a. If there are
vertices w ∈ V1 \ {v} with an odd number of incident edges colored a, and u ∈ V2 with an even number of incident edges
colored a, then we interchange the colors a and b for every edge on a path between w and u in G. Now, there might be only
one vertex y of (V1 \ {v})∪ V2 with the undesired parity of the number of incident edges colored a. If such a vertex exists we
interchange the colors a and b for every edge on a path between y and v in G, thus obtaining the desired edge coloring. The
proof is analogous for the case when we want to obtain that all the vertices of V1 \ {v} have an odd number, and the vertices
of V2 have an even number of incident edges colored a. □

2. Proof of Theorem 1

Proof of Theorem1. If the statement of Theorem1holds for any connected graphwith at least twoedges, than it clearly holds
for any normal graph. Thuswemay assume thatG is a connected graphwith two ormore edges. Let V = V (G) = V1∪· · ·∪Vk,
where V1 is an independent dominating set of G, and Vi is an independent dominating set of

G[V \ (
⋃
j<i

Vj)]

for every 1 < i < k, while Vk is an independent set. Thus for every v ∈ Vi with 1 < i ≤ k, the vertex v has at least one
neighbor in every set Vj with 1 ≤ j < i, and none in the set Vi. Let v be a vertex of Vi with code(v) = (b1, b2, b3). The idea of
the proof is to color the edges of G in such a way that, except in a few special cases, the following properties hold:

1. if i = 2l + 3 with l ≥ 1, then b1 ≥ 1, b2 = l and b3 is an odd number greater than 1,
2. if i = 2l + 2 with l ≥ 1, then b1 = l, b2 ≥ 1 and b3 is an even number greater than 0,
3. if i = 3, then b1 = 0, b2 ≥ 1 and b3 ≥ 1,
4. if i = 2 and v has a neighbor in Vj with j > 2, then b1 + b2 ≥ 2 and b3 = 0,
5. if i = 1 and v has a neighbor in Vj with j > 2, then b1 ≥ 0, b2 = 0 and b3 ≥ 1,
6. if v ∈ V1 ∪ V2 and v has no neighbor outside of V1 ∪ V2, we only take care that v has a different color code from all of

its neighbors.

First, we assign the color 3 to all the edges joining the vertices of V1 with the vertices of Vi, for every integer i with
3 ≤ i ≤ k. Next, we color all the edges incident with the vertices of Vk, proceed with coloring of the edges incident with the
vertices of Vk−1, and gradually decrease to V2.

Let us assume that we have colored all the edges incident with the vertices of Vl, for all l with i < l ≤ k. We now assign
colors to the edges joining the vertices of Vi and Vj, for all j with 1 ≤ j < i. For each v ∈ Vi we proceed as follows. Let
codep(v) = (a1, a2, a3). We color the edges incident with v, depending on the value of i.

1. For i > 5:
We consider two cases, depending on the parity of i.

(a) i = 2l+ 3, for some l ≥ 2. Since v has at least one neighbor in V1, we have a3 ≥ 1. For i = kwe have a1 = a2 = 0,
and for i < k we have a1 ≥ 0 and a2 = 0. Colors have already been assigned to all the edges joining v with the
vertices of V1 and Vj with j > i. We now assign colors to the edges joining v with the vertices of Vj, for every jwith
4 < j < i:

i. when j is odd, we color all such edges with 1,
ii. when j is even, we color an edge between v and one of the vertices of Vj (such a vertex always exists) with 2,

and all the remaining edges with 3.
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