Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Multi-set neighbor distinguishing 3-edge coloring Boian Vučković

Mathematical Institute, Serbian Academy of Science and Arts, Kneza Mihaila 36 (P.O. Box 367), 11001 Belgrade, Serbia

ARTICLE INFO

Article history: Received 18 October 2016 Received in revised form 7 July 2017 Accepted 1 December 2017

Keywords: Multi-set neighbor distinguishing edge coloring

ABSTRACT

Let *G* be a graph without isolated edges, and let $c : E(G) \rightarrow \{1, ..., k\}$ be a coloring of the edges, where adjacent edges may be colored the same. The color code of a vertex *v* is the ordered *k*-tuple $(a_1, a_2, ..., a_k)$, where a_i is the number of edges incident with *v* that are colored *i*. If every two adjacent vertices of *G* have different color codes, such a coloring is called multi-set neighbor distinguishing. In this paper, we prove that three colors are sufficient to produce a multi-set neighbor distinguishing edge coloring for every graph without isolated edges.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let V(G) and E(G) denote the vertex set and the edge set of a graph G, respectively. Let N(v) denote the set of neighbors of a vertex v and d(v) denote the degree of v. A dominating set S of a graph G is a set of vertices such that each vertex of V(G) is either in the set S or is adjacent in G to a vertex of S. A set of vertices is independent if no two vertices in the set are adjacent. For a subset S of V(G), the subgraph G[S] of G induced by S has S as its vertex set and two vertices of S are adjacent in G[S] if and only if they are adjacent in G. For notation not defined here, we refer the reader to [2].

A graph *G* is *normal* if it contains no isolated edges. Let *G* be a normal graph, and let $c : E(G) \to \{1, \ldots, k\}$ be a coloring of the edges, where adjacent edges may be colored the same. If *c* uses *k* colors we say that *c* is a *k*-edge coloring. The color code of a vertex *v* is the ordered *k*-tuple code(v) = (a_1, \ldots, a_k), where a_i is the number of edges incident with *v* that are colored *i*. Thus $\sum_{i=1}^{k} a_i = d(v)$. If every two adjacent vertices of a graph *G* have different color codes, such a coloring is called *multi-set neighbor distinguishing*. Since a graph that contains isolated edges does not accept such a coloring, we only consider normal graphs.

Karoński, Łuczak, and Thomason proved in [3] that if a normal graph G has chromatic number at most 3, it is possible to color the edges with the colors 1, 2 and 3, so that for every two adjacent vertices u and v of G, the sum of the colors of the edges incident with u is different from the sum of the colors of the edges incident with v. This implies that for an arbitrary normal graph G with chromatic number at most 3, three colors are sufficient to produce a multi-set neighbor distinguishing edge coloring. The best result concerning an arbitrary normal graph stating that four colors are sufficient to produce such a coloring was proved by Addario-Berry et al. in [1]. We improve this result in Theorem 1 by showing that, in fact, three colors are sufficient.

Theorem 1. For every normal graph G, there exists a multi-set neighbor distinguishing 3-edge coloring of G.

Note that, in general case, three colors are necessary. There are many graphs that do not allow a multi-set neighbor distinguishing edge coloring with less than three colors. Examples of such graphs are K_n when $n \ge 3$, and C_n when $n \ge 3$ and $n \ne 0 \mod 4$.

E-mail address: b.vuckovic@turing.mi.sanu.ac.rs.

If the colors of some of the edges incident with v are left unassigned, a color code that includes the number of already colored edges incident with v is called a *partial color code*, and we denote it by $code_p(v)$. In order to prove Theorem 1, we need the following lemma.

Lemma 2. Let *G* be an induced subgraph of a graph *H*, where *G* is a connected bipartite graph with partite sets V_1 and V_2 . Let there be given a partial edge coloring ϕ of *H* with arbitrary colors assigned to every edge uv with $u \in V(G)$ and $v \in V(H) \setminus V(G)$. Then, for arbitrary $v \in V_1$, there exists an extension of the coloring ϕ such that all the edges of *G* are assigned colors from $\{a, b\}$ and all the vertices of $V_1 \setminus \{v\}$ have in *H* an even (odd) number of incident edges colored *a*, while all the vertices of V_2 have in *H* an odd (even, respectively) number of incident edges colored *a*.

Proof. First, we color all the edges of *G* with the color *a*. While there exist two or more vertices in $V_1 \setminus \{v\}$ that are incident with an odd number of edges colored *a*, we do the following. Let w_1 and w_2 be two such vertices. We interchange the colors *a* and *b* for every edge on a path between w_1 and w_2 in *G*. This way the parity of the number of edges incident with w_1 and w_2 colored *a* is changed, while the parity of the number of edges colored *a* incident with any other vertex of *G* stays the same. At the end of this procedure, there is at most one vertex in $V_1 \setminus \{v\}$ that has an odd number of incident edges colored *a*. Next, while there exist two or more vertices in V_2 that are incident with an even number of edges colored *a*, we do the following. Let u_1 and u_2 be two such vertices. We interchange the colors *a* and *b* for every edge on a path between u_1 and u_2 in *G*. At the end of this procedure there is at most one vertex in V_2 that has an even number of incident edges colored *a*. If there are vertices $w \in V_1 \setminus \{v\}$ with an odd number of incident edges colored *a*, and $u \in V_2$ with an even number of incident edges colored *a*. If there are vertices $w \in V_1 \setminus \{v\}$ with the undesired parity of the number of incident edges colored *a*. If such a vertex exists we interchange the colors *a* and *b* for every edge on a path between w and u in *G*. Now, there might be only one vertex *y* of $(V_1 \setminus \{v\}) \cup V_2$ with the undesired parity of the number of incident edges colored *a*. If such a vertex exists we interchange the colors *a* and *b* for every edge on a path between *w* and *u* in *G*. Now, there might be only one vertex *y* of $(V_1 \setminus \{v\}) \cup V_2$ with the undesired parity of the number of incident edges colored *a*. If such a vertex exists we interchange the colors *a* and *b* for every edge on a path between *y* and *v* in *G*, thus obtaining the desired edge coloring. The proof is analogous for the case when we want to obtain that all

2. Proof of Theorem 1

Proof of Theorem 1. If the statement of Theorem 1 holds for any connected graph with at least two edges, than it clearly holds for any normal graph. Thus we may assume that *G* is a connected graph with two or more edges. Let $V = V(G) = V_1 \cup \cdots \cup V_k$, where V_1 is an independent dominating set of *G*, and V_i is an independent dominating set of

$$G[V \setminus (\bigcup_{j < i} V_j)]$$

for every 1 < i < k, while V_k is an independent set. Thus for every $v \in V_i$ with $1 < i \le k$, the vertex v has at least one neighbor in every set V_j with $1 \le j < i$, and none in the set V_i . Let v be a vertex of V_i with $code(v) = (b_1, b_2, b_3)$. The idea of the proof is to color the edges of G in such a way that, except in a few special cases, the following properties hold:

- 1. if i = 2l + 3 with $l \ge 1$, then $b_1 \ge 1$, $b_2 = l$ and b_3 is an odd number greater than 1,
- 2. if i = 2l + 2 with $l \ge 1$, then $b_1 = l, b_2 \ge 1$ and b_3 is an even number greater than 0,
- 3. if i = 3, then $b_1 = 0$, $b_2 \ge 1$ and $b_3 \ge 1$,
- 4. if i = 2 and v has a neighbor in V_i with j > 2, then $b_1 + b_2 \ge 2$ and $b_3 = 0$,
- 5. if i = 1 and v has a neighbor in V_j with j > 2, then $b_1 \ge 0$, $b_2 = 0$ and $b_3 \ge 1$,
- 6. if $v \in V_1 \cup V_2$ and v has no neighbor outside of $V_1 \cup V_2$, we only take care that v has a different color code from all of its neighbors.

First, we assign the color 3 to all the edges joining the vertices of V_1 with the vertices of V_i , for every integer *i* with $3 \le i \le k$. Next, we color all the edges incident with the vertices of V_k , proceed with coloring of the edges incident with the vertices of V_{k-1} , and gradually decrease to V_2 .

Let us assume that we have colored all the edges incident with the vertices of V_l , for all l with $i < l \le k$. We now assign colors to the edges joining the vertices of V_i and V_j , for all j with $1 \le j < i$. For each $v \in V_i$ we proceed as follows. Let $\operatorname{code}_n(v) = (a_1, a_2, a_3)$. We color the edges incident with v, depending on the value of i.

1. **For** *i* > 5:

We consider two cases, depending on the parity of *i*.

- (a) i = 2l + 3, for some $l \ge 2$. Since v has at least one neighbor in V_1 , we have $a_3 \ge 1$. For i = k we have $a_1 = a_2 = 0$, and for i < k we have $a_1 \ge 0$ and $a_2 = 0$. Colors have already been assigned to all the edges joining v with the vertices of V_1 and V_j with j > i. We now assign colors to the edges joining v with the vertices of V_j , for every j with 4 < j < i:
 - i. when *j* is odd, we color all such edges with 1,
 - ii. when *j* is even, we color an edge between v and one of the vertices of V_j (such a vertex always exists) with 2, and all the remaining edges with 3.

Download English Version:

https://daneshyari.com/en/article/8903097

Download Persian Version:

https://daneshyari.com/article/8903097

Daneshyari.com