Note

Multi-set neighbor distinguishing 3-edge coloring

Bojan Vučković
Mathematical Institute, Serbian Academy of Science and Arts, Kneza Mihaila 36 (P.O. Box 367), 11001 Belgrade, Serbia

ARTICLE INFO

Article history:

Received 18 October 2016
Received in revised form 7 July 2017
Accepted 1 December 2017

Keywords:

Multi-set neighbor distinguishing edge coloring

Abstract

Let G be a graph without isolated edges, and let $c: E(G) \rightarrow\{1, \ldots, k\}$ be a coloring of the edges, where adjacent edges may be colored the same. The color code of a vertex v is the ordered k-tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, where a_{i} is the number of edges incident with v that are colored i. If every two adjacent vertices of G have different color codes, such a coloring is called multi-set neighbor distinguishing. In this paper, we prove that three colors are sufficient to produce a multi-set neighbor distinguishing edge coloring for every graph without isolated edges.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G, respectively. Let $N(v)$ denote the set of neighbors of a vertex v and $d(v)$ denote the degree of v. A dominating set S of a graph G is a set of vertices such that each vertex of $V(G)$ is either in the set S or is adjacent in G to a vertex of S. A set of vertices is independent if no two vertices in the set are adjacent. For a subset S of $V(G)$, the subgraph $G[S]$ of G induced by S has S as its vertex set and two vertices of S are adjacent in $G[S]$ if and only if they are adjacent in G. For notation not defined here, we refer the reader to [2].

A graph G is normal if it contains no isolated edges. Let G be a normal graph, and let $c: E(G) \rightarrow\{1, \ldots, k\}$ be a coloring of the edges, where adjacent edges may be colored the same. If c uses k colors we say that c is a k-edge coloring. The color code of a vertex v is the ordered k-tuple $\operatorname{code}(v)=\left(a_{1}, \ldots, a_{k}\right)$, where a_{i} is the number of edges incident with v that are colored i. Thus $\sum_{i=1}^{k} a_{i}=d(v)$. If every two adjacent vertices of a graph G have different color codes, such a coloring is called multi-set neighbor distinguishing. Since a graph that contains isolated edges does not accept such a coloring, we only consider normal graphs.

Karoński, Łuczak, and Thomason proved in [3] that if a normal graph G has chromatic number at most 3, it is possible to color the edges with the colors 1,2 and 3 , so that for every two adjacent vertices u and v of G, the sum of the colors of the edges incident with u is different from the sum of the colors of the edges incident with v. This implies that for an arbitrary normal graph G with chromatic number at most 3 , three colors are sufficient to produce a multi-set neighbor distinguishing edge coloring. The best result concerning an arbitrary normal graph stating that four colors are sufficient to produce such a coloring was proved by Addario-Berry et al. in [1]. We improve this result in Theorem 1 by showing that, in fact, three colors are sufficient.

Theorem 1. For every normal graph G, there exists a multi-set neighbor distinguishing 3-edge coloring of G.
Note that, in general case, three colors are necessary. There are many graphs that do not allow a multi-set neighbor distinguishing edge coloring with less than three colors. Examples of such graphs are K_{n} when $n \geq 3$, and C_{n} when $n \geq 3$ and $n \neq 0 \bmod 4$.

If the colors of some of the edges incident with v are left unassigned, a color code that includes the number of already colored edges incident with v is called a partial color code, and we denote it by code ${ }_{p}(v)$. In order to prove Theorem 1 , we need the following lemma.

Lemma 2. Let G be an induced subgraph of a graph H, where G is a connected bipartite graph with partite sets V_{1} and V_{2}. Let there be given a partial edge coloring ϕ of H with arbitrary colors assigned to every edge $u v$ with $u \in V(G)$ and $v \in V(H) \backslash V(G)$. Then, for arbitrary $v \in V_{1}$, there exists an extension of the coloring ϕ such that all the edges of G are assigned colors from $\{a, b\}$ and all the vertices of $V_{1} \backslash\{v\}$ have in H an even (odd) number of incident edges colored a, while all the vertices of V_{2} have in H an odd (even, respectively) number of incident edges colored a.

Proof. First, we color all the edges of G with the color a. While there exist two or more vertices in $V_{1} \backslash\{v\}$ that are incident with an odd number of edges colored a, we do the following. Let w_{1} and w_{2} be two such vertices. We interchange the colors a and b for every edge on a path between w_{1} and w_{2} in G. This way the parity of the number of edges incident with w_{1} and w_{2} colored a is changed, while the parity of the number of edges colored a incident with any other vertex of G stays the same. At the end of this procedure, there is at most one vertex in $V_{1} \backslash\{v\}$ that has an odd number of incident edges colored a. Next, while there exist two or more vertices in V_{2} that are incident with an even number of edges colored a, we do the following. Let u_{1} and u_{2} be two such vertices. We interchange the colors a and b for every edge on a path between u_{1} and u_{2} in G. At the end of this procedure there is at most one vertex in V_{2} that has an even number of incident edges colored a. If there are vertices $w \in V_{1} \backslash\{v\}$ with an odd number of incident edges colored a, and $u \in V_{2}$ with an even number of incident edges colored a, then we interchange the colors a and b for every edge on a path between w and u in G. Now, there might be only one vertex y of $\left(V_{1} \backslash\{v\}\right) \cup V_{2}$ with the undesired parity of the number of incident edges colored a. If such a vertex exists we interchange the colors a and b for every edge on a path between y and v in G, thus obtaining the desired edge coloring. The proof is analogous for the case when we want to obtain that all the vertices of $V_{1} \backslash\{v\}$ have an odd number, and the vertices of V_{2} have an even number of incident edges colored a.

2. Proof of Theorem 1

Proof of Theorem 1. If the statement of Theorem 1 holds for any connected graph with at least two edges, than it clearly holds for any normal graph. Thus we may assume that G is a connected graph with two or more edges. Let $V=V(G)=V_{1} \cup \ldots \cup V_{k}$, where V_{1} is an independent dominating set of G, and V_{i} is an independent dominating set of

$$
G\left[V \backslash\left(\bigcup_{j<i} V_{j}\right)\right]
$$

for every $1<i<k$, while V_{k} is an independent set. Thus for every $v \in V_{i}$ with $1<i \leq k$, the vertex v has at least one neighbor in every set V_{j} with $1 \leq j<i$, and none in the set V_{i}. Let v be a vertex of V_{i} with $\operatorname{code}(v)=\left(b_{1}, b_{2}, b_{3}\right)$. The idea of the proof is to color the edges of G in such a way that, except in a few special cases, the following properties hold:

1. if $i=2 l+3$ with $l \geq 1$, then $b_{1} \geq 1, b_{2}=l$ and b_{3} is an odd number greater than 1 ,
2. if $i=2 l+2$ with $l \geq 1$, then $b_{1}=l, b_{2} \geq 1$ and b_{3} is an even number greater than 0 ,
3. if $i=3$, then $b_{1}=0, b_{2} \geq 1$ and $b_{3} \geq 1$,
4. if $i=2$ and v has a neighbor in V_{j} with $j>2$, then $b_{1}+b_{2} \geq 2$ and $b_{3}=0$,
5. if $i=1$ and v has a neighbor in V_{j} with $j>2$, then $b_{1} \geq 0, b_{2}=0$ and $b_{3} \geq 1$,
6. if $v \in V_{1} \cup V_{2}$ and v has no neighbor outside of $V_{1} \cup V_{2}$, we only take care that v has a different color code from all of its neighbors.

First, we assign the color 3 to all the edges joining the vertices of V_{1} with the vertices of V_{i}, for every integer i with $3 \leq i \leq k$. Next, we color all the edges incident with the vertices of V_{k}, proceed with coloring of the edges incident with the vertices of V_{k-1}, and gradually decrease to V_{2}.

Let us assume that we have colored all the edges incident with the vertices of V_{l}, for all l with $i<l \leq k$. We now assign colors to the edges joining the vertices of V_{i} and V_{j}, for all j with $1 \leq j<i$. For each $v \in V_{i}$ we proceed as follows. Let $\operatorname{code}_{p}(v)=\left(a_{1}, a_{2}, a_{3}\right)$. We color the edges incident with v, depending on the value of i.

1. For $i>5$:

We consider two cases, depending on the parity of i.
(a) $i=2 l+3$, for some $l \geq 2$. Since v has at least one neighbor in V_{1}, we have $a_{3} \geq 1$. For $i=k$ we have $a_{1}=a_{2}=0$, and for $i<k$ we have $a_{1} \geq 0$ and $a_{2}=0$. Colors have already been assigned to all the edges joining v with the vertices of V_{1} and V_{j} with $j>i$. We now assign colors to the edges joining v with the vertices of V_{j}, for every j with $4<j<i$:
i. when j is odd, we color all such edges with 1 ,
ii. when j is even, we color an edge between v and one of the vertices of V_{j} (such a vertex always exists) with 2 , and all the remaining edges with 3 .

https://daneshyari.com/en/article/8903097

Download Persian Version:

https://daneshyari.com/article/8903097

Daneshyari.com

