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a b s t r a c t

A packing k-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for
each 1 ≤ i ≤ k the distance between any two distinct x, y ∈ Vi is at least i + 1. The
packing chromatic number, χp(G), of a graph G is the minimum k such that G has a packing
k-coloring. Sloper showed that there are 4-regular graphs with arbitrarily large packing
chromatic number. The question whether the packing chromatic number of subcubic
graphs is bounded appears in several papers. We answer this question in the negative.
Moreover, we show that for every fixed k and g ≥ 2k + 2, almost every n-vertex cubic
graph of girth at least g has the packing chromatic number greater than k.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a positive integer i, a set S of vertices in a graph G is i-independent if the distance in G between any two distinct
vertices of S is at least i + 1. In particular, a 1-independent set is simply an independent set.

A packing k-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for each 1 ≤ i ≤ k, the set Vi is
i-independent. The packing chromatic number, χp(G), of a graph G, is the minimum k such that G has a packing k-coloring.
The notion of packing k-coloring was introduced in 2008 by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [15] (under
the name broadcast coloring)motivated by frequency assignment problems in broadcast networks. The concept has attracted
a considerable attention recently: there aremore than 25 papers on the topic (see e.g. [1,5–12,14,21] and references in them).
In particular, Fiala and Golovach [10] proved that finding the packing chromatic number of a graph is NP-hard even in the
class of trees. Sloper [21] showed that there are graphs with maximum degree 4 and arbitrarily large packing chromatic
number.

The questionwhether the packing chromatic number of all subcubic graphs (i.e., the graphswithmaximumdegree atmost
3) is bounded by a constant was not resolved. For example, Brešar, Klavžar, Rall, and Wash [7] wrote: ‘One of the intriguing
problems related to the packing chromatic number is whether it is bounded by a constant in the class of all cubic graphs’. It was
proved in [7,17–19,21] that it is indeed bounded in some subclasses of subcubic graphs. On the other hand, Gastineau and
Togni [14] constructed a cubic graph G with χp(G) = 13, and asked whether there are cubic graphs with a larger packing
chromatic number. Brešar, Klavžar, Rall, andWash [8] answered this question in affirmative by constructing a cubic graph G′

with χp(G′) = 14. The main result of this paper answers the question in full: Indeed, there are cubic graphs with arbitrarily
large packing chromatic number. Moreover, we prove that ‘many’ cubic graphs have ‘high’ packing chromatic number:

Theorem 1. For each fixed integer k ≥ 12 and g ≥ 2k + 2, almost every n-vertex cubic graph G of girth at least g satisfies
χp(G) > k.
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The theorem will be proved in the language of the so-called Configuration model, F3(n). We will discuss this concept and
some important facts on it in the next section. In Section 3 we give upper bounds on the sizes ci of maximum i-independent
sets in almost all cubic n-vertex graphs of large girth. The original plan was to show that for a fixed k and large n, the sum
c1 +· · ·+ ck is less than n. But wewere not able to prove it (andmaybe this is not true). In Section 4, we give an upper bound
on the size of the union of an 1-independent, a 2-independent, and a 4-independent sets which is less than c1 + c2 + c4. This
allows us to prove Theorem 1 in the last section.

2. Preliminaries

2.1. Notation

We mostly use standard notation. If G is a (multi)graph and v, u ∈ V (G), then EG(v, u) denotes the set of all edges in G
connecting v and u, eG(v, u) := |EG(v, u)|, and degG(v) :=

∑
u∈V (G)\{v}

eG(v, u). ForA ⊆ V (G),G[A]denotes the sub(multi)graph
of G induced by A. The independence number of G is denoted by α(G). For k ∈ Z>0, [k] denotes the set {1, . . . , k}.

2.2. The configuration model

The configuration model is due in different versions to Bender and Canfield [2] and Bollobás [3,4]. Our work is based on
the version of Bollobás. Let V be the vertex set of the graph, we are going to associate a 3-element set to each vertex in V .
Let n be an even positive integer. Let Vn = [n] and consider the Cartesian productWn = Vn × [3]. A configuration/pairing (of
order n and degree 3) is a partition ofWn into 3n/2 pairs, i.e., a perfect matching of elements inWn. There are( 3n

2

)
·
( 3n−2

2

)
· . . . ·

( 2
2

)
(3n/2)!

= (3n − 1)!!

such matchings. Let F3(n) denote the collection of all (3n − 1)!! possible pairings on Wn. We project each pairing F ∈ F3(n)
to a multigraph π (F ) on the vertex set Vn by ignoring the second coordinate. Then π (F ) is a 3-regular multigraph (which
may or may not contain loops and multi-edges). Let π (F3(n)) = {π (F ) : F ∈ F3(n)} be the set of 3-regular multigraphs on
Vn. By definition,

each simple graph G ∈ π (F3(n)) corresponds to (3!)n distinct pairings in F3(n). (1)

We will call the elements of Vn - vertices, and of Wn - points.

Definition 2. Let Gg (n) be the set of all cubic graphs with vertex set Vn = [n] and girth at least g and G′
g (n) = {F ∈ F3(n) :

π (F ) ∈ Gg (n)}.

We will use the following result:

Theorem 3 (Wormald [22], Bollobás [3]). For each fixed g ≥ 3,

lim
n→∞

|G′
g (n)|

|F3(n)|
= exp

{
−

g−1∑
k=1

2k−1

k

}
. (2)

Remark. When we say that a pairing F has a multigraph property A, we mean that π (F ) has property A.

Since dealing with pairings is simpler than working with labeled simple regular graphs, we need the following well-
known consequence of Theorem 3.

Corollary 4 ([20](Corollary 1.1), [16](Theorem 9.5)). For fixed g ≥ 3, any property that holds for π (F ) for almost all pairings
F ∈ F3(n) also holds for almost all graphs in Gg (n).

Proof. Suppose property A holds for π (F ) for almost all F ∈ F3(n). Let H(n) denote the set of graphs in Gg (n) that do not
have property A and H′(n) = {F ∈ F3(n) : π (F ) ∈ H(n)}. Let B(n) denote the set of pairings F ∈ F3(n) such that π (F ) does
not have property A. Then H′(n) ⊆ B(n). Hence by the choice of A,

|H′(n)|
|F3(n)|

≤
|B(n)|
|F3(n)|

→ 0 as n → ∞. (3)

By (1), we have

|H(n)|
|Gg (n)|

=
|H(n)|
|H′(n)|

·
|H′(n)|
|G′

g (n)|
·
|G′

g (n)|

|Gg (n)|
=

1
(3!)n

·
|H′(n)|
|G′

g (n)|
· (3!)n =

|H′(n)|
|G′

g (n)|
.



Download English Version:

https://daneshyari.com/en/article/8903121

Download Persian Version:

https://daneshyari.com/article/8903121

Daneshyari.com

https://daneshyari.com/en/article/8903121
https://daneshyari.com/article/8903121
https://daneshyari.com

