Regular Hadamard matrices constructed from Hadamard 2-designs and conference graphs

Dean Crnković
Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

ARTICLE INFO

Article history:

Received 30 July 2016
Accepted 17 September 2017
Available online xxxx

Keywords:

Regular Hadamard matrix
Hadamard 2-design
Conference graph

Abstract

Suppose there exists a Hadamard 2- $\left(m, \frac{m-1}{2}, \frac{m-3}{4}\right)$ design having skew incidence matrix. If there exists a conference graph on $2 m-1$ vertices, then there exists a regular Hadamard matrix of order $4 m^{2}$. A conference graph on $2 m+3$ vertices yields a regular Hadamard matrix of order $4(m+1)^{2}$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A Hadamard matrix of order m is an $(m \times m)$-matrix $H=\left(h_{i, j}\right), h_{i, j} \in\{-1,1\}$, satisfying $H H^{T}=H^{T} H=m I_{m}$, where I_{m} is the identity matrix of order m. The order of a Hadamard matrix must be 1,2 , or a multiple of 4 . The Hadamard conjecture proposes that a Hadamard matrix of order $4 k$ exists for every positive integer k. A Hadamard matrix is regular if the row and column sums are constant. A regular Hadamard matrix is necessarily of order $4 k^{2}$ with constant row sum $2 k$. It was conjectured that a regular Hadamard matrix of order $4 k^{2}$ exists for every positive integer k. Constructions of regular Hadamard matrices coming from the theory of Menon-Hadamard difference sets are given in [1,5]. Important results about the existence of regular Hadamard matrices are given by T. Xia, M. Xia and J. Seberry in [12,13]. In [13] they proved the following statement: When $k=47,71,151,167,199,263,359,439,599,631,727,919,5 q_{1}, 5 q_{2} N, 7 q_{3}$, where q_{1}, q_{2} and q_{3} are prime powers such that $q_{1} \equiv 1(\bmod 4), q_{2} \equiv 5(\bmod 8)$ and $q_{3} \equiv 3(\bmod 8), N=2^{a} 3^{b} t^{2}, a, b=0$ or $1, t \neq 0$ is an arbitrary integer, then there exist regular Hadamard matrices of order $4 k^{2}$.

The existence of some regular Hadamard matrices of order $4 p^{2}$, when p is a prime, $p \equiv 7(\bmod 16)$, is established in [8], and the following theorem is proved in [3].

Theorem 1. Let p and $2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Then there exists a regular Hadamard matrix of order $4 p^{2}$.
The construction employed to prove Theorem 1 uses Paley graphs and Paley designs. In this paper, we generalize this construction using conference graphs and Hadamard designs having skew incidence matrix. In a similar way, we generalize the construction of regular Hadamard matrices given in [4].

2. Hadamard 2-designs

A 2-($v, k, \lambda)$ design is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

[^0]1. $|\mathcal{P}|=v$;
2. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P};
3. every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

The elements of the set \mathcal{P} are called points and the elements of the set \mathcal{B} are called blocks. If $|\mathcal{P}|=|\mathcal{B}|=v$ and $2 \leq k \leq v-2$, then a $2-(v, k, \lambda)$ design is called a symmetric design.

Hadamard matrices of order $4 k$ can be used to create symmetric designs with parameters ($4 k-1,2 k-1, k-1$) or ($4 k-1,2 k, k$), which are called Hadamard 2-designs (see [2,11]). The construction is reversible, so that symmetric designs with these parameters can be used to construct Hadamard matrices. It is also well known that the existence of a symmetric design with parameters $\left(4 u^{2}, 2 u^{2}-u, u^{2}-u\right)$ or $\left(4 u^{2}, 2 u^{2}+u, u^{2}+u\right)$ is equivalent to the existence of a regular Hadamard matrix of order $4 u^{2}$ (see [11, Theorem 1.4]). Such symmetric designs are called Menon designs.

A matrix A is skew-symmetric if $A^{T}=-A$. A Hadamard matrix H of order $4 k$ is skew-type if $H=A+I_{4 k}$, where $A^{T}=-A$. A (0,1)-matrix D is skew if $D+D^{T}=J-I$, where J the all-one matrix. A skew-type Hadamard matrix corresponds to a Hadamard 2-design with skew incidence matrix, and vice versa.

Suppose D is the incidence matrix of a symmetric design. $D+I$ is again the incidence matrix of a symmetric design if and only if D is skew (see [9]). Let D be a skew incidence matrix of a Hadamard $2-\left(m, \frac{m-1}{2}, \frac{m-3}{4}\right)$ design. Further, let $\bar{D}=\left(\bar{d}_{i j}\right)$ be an incidence matrix of a complementary Hadamard design with parameters ($m, \frac{m+1}{2}, \frac{m+1}{4}$). Then $D+I_{m}$ and $\bar{D}-I_{m}$ are incidence matrices of symmetric designs with parameters ($m, \frac{m+1}{2}, \frac{m+1}{4}$) and ($m, \frac{m-1}{2}, \frac{m-3}{4}$), respectively.

For $v \in N$ we denote by j_{v} the all-one vector of dimension v, by 0_{v} the zero-vector of dimension v, by J_{v} the all-one matrix of dimension $(v \times v)$, and by $0_{v \times v}$ the zero-matrix of dimension $(v \times v)$. Further, for $a, b \in N$ we denote by $J_{a \times b}$ the all-one matrix of dimension $(a \times b)$.

Lemma 1. Let D be a skew incidence matrix of a Hadamard 2-($\left.m, \frac{m-1}{2}, \frac{m-3}{4}\right)$ design and let $\bar{D}=\left(\bar{d}_{i j}\right)$ be an incidence matrix of a complementary Hadamard ($m, \frac{m+1}{2}, \frac{m+1}{4}$) design. The matrices D and \bar{D} have the following properties:

$$
\begin{aligned}
& D \cdot \bar{D}^{T}=\left(\bar{D}-I_{m}\right)\left(D+I_{m}\right)^{T}=\frac{m+1}{4} J_{m}-\frac{m+1}{4} I_{m}, \\
& {\left[D \mid \bar{D}-I_{m}\right] \cdot\left[\bar{D}-I_{m} \mid D\right]^{T}=\frac{m-1}{2} J_{m}-\frac{m-1}{2} I_{m},} \\
& {[D \mid D] \cdot\left[D+I_{m} \mid \bar{D}-I_{m}\right]^{T}=\frac{m-1}{2} J_{m},}
\end{aligned}
$$

$$
[\bar{D} \mid D] \cdot\left[\bar{D}-I_{m} \mid \bar{D}-I_{m}\right]^{T}=\frac{m-1}{2} J_{m}
$$

Proof. Each block of a symmetric ($m, \frac{m-1}{2}, \frac{m-3}{4}$) design meets the complement of any other block in $\frac{m+1}{4}$ points. Hence, $D \cdot \bar{D}^{T}=\frac{m+1}{4} J_{m}-\frac{m+1}{4} I_{m}$. Further, $D+I_{m}$ is the incidence matrix of a symmetric $\left(m, \frac{m+1}{2}, \frac{m+1}{4}\right)$ design and $\overline{D+I_{m}}=\bar{D}-I_{m}$, so $\left(\bar{D}-I_{m}\right)\left(D+I_{m}\right)^{T}=\frac{m+1}{4} J_{m}-\frac{m+1}{4} I_{m}$.

The other equalities follow from the properties listed below:

$$
\begin{aligned}
& D_{i} \cdot\left(\bar{D}-I_{m}\right)_{j}^{T}= \begin{cases}\frac{0,}{\frac{m+1}{4}-1,} & \text { if } d_{i j}=1, \\
\frac{m+1}{4}, & \text { if } d_{i j}=0, i \neq j,\end{cases} \\
& \left(\bar{D}-I_{m}\right)_{i} \cdot D_{j}^{T}= \begin{cases}\frac{0,}{\frac{m+1}{4}-1,} & \text { if } d_{j i}=1, \\
\frac{m+1}{4}, & \text { if } d_{j i}=0, i \neq j,\end{cases} \\
& D_{i} \cdot\left(D+I_{m}\right)_{j}^{T}= \begin{cases}\frac{m-1}{2}, & \text { if } i=j, \\
\frac{m-3}{4}+1, & \text { if } d_{i j}=1, \\
\frac{m-3}{4}, & \text { if } d_{i j}=0, i \neq j,\end{cases}
\end{aligned}
$$

https://daneshyari.com/en/article/8903127

Download Persian Version:

https://daneshyari.com/article/8903127

Daneshyari.com

[^0]: E-mail address: deanc@math.uniri.hr.

