Existence of incomplete canonical Kirkman packing designs

Lingye Wang ${ }^{\text {a }}$, R. Julian R. Abel ${ }^{\text {b }}$, Dameng Deng ${ }^{\text {c }}$, Jinhua Wang ${ }^{\text {a,* }}$
${ }^{\text {a }}$ School of Sciences, Nantong University, Nantong 226007, PR China
${ }^{\text {b }}$ School of Mathematics and Statistics, University of New South Wales, N.S.W. 2052, Australia
c Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, PR China

ARTICLE INFO

Article history:

Received 13 December 2016
Received in revised form 17 September 2017
Accepted 19 September 2017
Available online 18 October 2017

Keywords:

Kirkman canonical packing
Embedding
Group divisible design
Frame
Resolvable

Abstract

For u, v positive integers with $u \equiv v \equiv 4(\bmod 6)$, let $\operatorname{ICKPD}(u, v)$ denote a canonical Kirkman packing of order u missing one of order v. In this paper, it is shown that the necessary condition for existence of an $\operatorname{ICKPD}(u, v)$, namely $u \geq 3 v+4$, is sufficient with a definite exception $(u, v)=(16,4)$, and except possibly when $v>76, v \equiv 4(\bmod 12)$ and $u \in\{3 v+4,3 v+10\}$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A packing of order v is a pair (X, \mathscr{B}) where X is a v-set and \mathscr{B} is a collection of subsets (called blocks) of X such that each 2-subset of X is contained in at most one block of \mathscr{B}. The leave of (X, \mathscr{B}) is a graph (X, E) where $\{x, y\} \in E$ if and only if $\{x, y\}$ is not contained in any block of \mathscr{B}. A packing is called resolvable if its block set \mathscr{B} admits a partition into parallel classes, each parallel class being a partition of the v-set X.

When $v \equiv 3(\bmod 6)$, the maximum possible number of parallel classes in a resolvable packing of a v-set by triples cannot exceed $(v-1) / 2$. A resolvable packing of a v-set by triples that achieves this bound is called a Kirkman triple system, and is denoted by $\operatorname{KTS}(v)$. The leave of a $\operatorname{KTS}(v)$ is an empty set.

Similarly, if $v \equiv 0(\bmod 6)$, then a resolvable packing of a v-set by triples with $v / 2-1$ parallel classes is called a nearly Kirkman triple system, denoted by NKTS (v). The leave of an NKTS (v) is a 1-factor.

For the existence of Kirkman triple systems and nearly Kirkman triple systems, we have the following results:
Theorem $1.1([20])$. There exists $a \operatorname{KTS}(v)$ if and only if $v \equiv 3(\bmod 6)$.
Theorem $1.2([3,4,18,21])$. There exists an NKTS (v) if and only if $v \equiv 0(\bmod 6)$ and $v \geq 18$.
For a given $v \equiv 4(\bmod 6)$ and $v \geq 4$, following [8], we define a canonical Kirkman packing design of order v, denoted by $\operatorname{CKPD}(v)$, to be a resolvable packing with $(v-4) / 2$ parallel classes such that:
(i) each parallel class consists of a size 4 block and $(v-4) / 3$ triples;
(ii) the leave consists of the union of $(v-4) / 2$ vertex-disjoint edges and a K_{4} with no vertices in common with those edges.

[^0]It is clear that a $\operatorname{CKPD}(v)$ is equivalent to a resolvable $\{3,4\}-G D D$ of type $2^{(v-4) / 2} 4^{1}$ in which each parallel class contains exactly one block of size 4 [19, Proposition 2.1]. It is also clear that no point in the size 4 group can occur in any block of size 4, and every other point appears in two size 4 blocks.

For information on some types of Kirkman packing designs that are not canonical Kirkman packings, the reader is referred to [5-7]. The existence of canonical Kirkman packing designs has been completely determined:

Theorem $1.3([8,10,19])$. Let $v \equiv 4(\bmod 6)$. Then there exists a CKPD (v) if and only if $v \geq 22$.
For given positive integers u and v with $u, v \equiv 4(\bmod 6)$, let (X, \mathscr{A}) be a $\operatorname{CKPD}(u)$ and (Y, \mathscr{B}) be a $\operatorname{CKPD}(v)$. If $Y \subseteq X$, $\mathscr{B} \subseteq \mathscr{A}$, each parallel class of (Y, \mathscr{B}) is a part of some parallel class of \mathscr{A}, and the leave of (Y, \mathscr{B}) is a subgraph of the leave of (X, \mathscr{A}), then we say (Y, \mathscr{B}) is embedded in (X, \mathscr{A}), or (Y, \mathscr{B}) is a subsystem of (X, \mathscr{A}). Removing all the blocks of \mathscr{B} from \mathscr{A} gives an incomplete canonical Kirkman packing design. Formally, we give the following definition:

Let $u, v \equiv 4(\bmod 6)$. An incomplete canonical Kirkman packing design of order u with a hole of size v, denoted by $\operatorname{ICKPD}(u, v)$, is a triple (X, Y, \mathscr{C}) where X is a point set of u elements, Y (called a hole) is a v-subset of X, and \mathscr{C} is a collection of subsets (blocks) of X such that:
(i) $|B \cap Y| \leq 1$ for each $B \in \mathscr{C}$;
(ii) any two distinct elements of X occur together in at most one block;
(iii) \mathscr{C} admits a partition into $(u-v) / 2$ parallel classes on X, each of which contains one block of size 4 and $(u-4) / 3$ triples, and further $(v-4) / 2$ holey parallel classes of triples, each of which contains each element of $X \backslash Y$ once and no element of the hole Y.
(iv) each element of $X \backslash Y$ is contained in exactly two blocks of size 4.

The leave of an $\operatorname{ICKPD}(u, v)$ consists of the union of a K_{v} on Y and $(u-v) / 2$ vertex-disjoint edges on $X \backslash Y$.
The embedding problem for various kinds of resolvable designs has been studied extensively and completely solved for Kirkman triple systems and nearly Kirkman triple systems.

Theorem $1.4([22,24])$. A $K T S(v)$ can be embedded in a $K T S(u)$ if and only if $u, v \equiv 3(\bmod 6)$ and $u \geq 3 v$.
Theorem $1.5([11-13])$. An NKTS (v) can be embedded in an $\operatorname{NKTS}(u)$ if and only if $u, v \equiv 0(\bmod 6), v \geq 18$ and $u \geq 3 v$. Further, if $v \in\{6,12\}$ and $u \geq 3 v$, then there exists an NKTS (u) with a hole of size v.

In 2008, Deng and Su [14] investigated the problem of embedding of CKPDs and established the following results.
Lemma $1.6([14])$. Let $u, v \equiv 4(\bmod 6)$. If a $\operatorname{CKPD}(v)$ can be embedded in a $\operatorname{CKPD}(u)$, then $u \geq 3 v+4$.
Lemma $1.7([14])$. Let $u, v \equiv 4(\bmod 6), v \geq 82$. Then there exists an $\operatorname{ICKPD}(u, v)$ for $u \geq 3.5 v$.
Lemma $1.8([14])$. Let $v \in\{4,10\}$. Then there exists an $\operatorname{ICKPD}(u, v)$ whenever $u \equiv 4(\bmod 6), u \geq 3 v+4$ with the definite exception $(u, v)=(16,4)$.

Recently, Cheng and Wang [9] have investigated the existence of $\operatorname{ICKPD}(u, v)$ s further and obtained:
Lemma 1.9 ([9]). Let $v=16$ or 22 . Then there exists an $\operatorname{ICKPD}(u, v)$ if and only if $u \equiv 4(\bmod 6)$ and $u \geq 3 v+4$ except possibly for $(u, v)=(52,16)$.

In this paper, we will give more constructions of $\operatorname{ICKPD}(u, v) \mathrm{s}$.
The remainder of this paper is organized as follows. Section 2 gives the basic concepts and construction methods for GDDs and constructs directly some new non-uniform 4-GDDs which will be used later on. Section 3 shows existence of $\operatorname{ICKPD}(u, v)$ s for small $v(4 \leq v \leq 76)$. Section 4 deals with the existence problem for $\operatorname{ICKPD}(u, v) \mathrm{s}$ with maximum holes. Section 5 is devoted to determining the spectrum for ICKPDs. A brief conclusion will be given in Section 6.

2. Some new 4-GDDs

In this section, we will use direct and recursive constructions to give some new non-uniform 4-GDDs for later use.
A group divisible design (GDD) is a triple $(X, \mathscr{G}, \mathscr{B})$ where X is a set of points, \mathscr{G} is a partition of X into groups, and \mathscr{B} is a collection of subsets (blocks) of X so that any pair of distinct points occurs either in some group or in exactly one block, but not both. A $K-G D D(X, \mathscr{G}, \mathscr{B})$ of type $g_{1}^{u_{1}} g_{2}^{u_{2}} \cdots g_{s}^{u_{s}}$ is a GDD with u_{i} groups of size $g_{i}, i=1,2, \ldots, s$ and whose block sizes all lie in the set K. A GDD is called uniform if all of its groups have the same size. Also, a $K-G D D$ with $K=\{k\}$ is usually called a k-GDD.

The spectra for uniform 4-GDDs and 4-GDDs of type $g^{4} m^{1}$ have been determined, see [16, IV.4.1, Theorems 4.6 and 4.12].

https://daneshyari.com/en/article/8903129

Download Persian Version:

https://daneshyari.com/article/8903129

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: $354197853 @ q q . c o m ~(L . W a n g), ~ r . j . a b e l @ u n s w . e d u . a u ~(R . J . R . ~ A b e l), ~ m d d e n g @ s j t u . e d u . c n ~(D . ~ D e n g), ~ j h w a n g @ n t u . e d u . c n ~(J . ~ W a n g) . ~$

