On the determinant of the Laplacian matrix of a complex unit gain graph ${ }^{\text {¹ }}$

Yi Wang ${ }^{\text {a,* }}$, Shi-Cai Gong ${ }^{\text {b }}$, Yi-Zheng Fan ${ }^{\text {a }}$
a School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, PR China
b School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, PR China

ARTICLE INFO

Article history:

Received 22 December 2015
Received in revised form 3 July 2017
Accepted 4 July 2017
Available online xxxx

Keywords:

Gain graph
Adjacency matrix
Laplacian matrix
Determinant

Abstract

Let G be a complex unit gain graph which is obtained from an undirected graph Γ by assigning a complex unit $\varphi\left(v_{i} v_{j}\right)$ to each oriented edge $v_{i} v_{j}$ such that $\varphi\left(v_{i} v_{j}\right) \varphi\left(v_{j} v_{i}\right)=1$ for all edges. The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$, where $D(G)$ is the degree diagonal matrix of Γ and $A(G)=\left(a_{i j}\right)$ has $a_{i j}=\varphi\left(v_{i} v_{j}\right)$ if v_{i} is adjacent to v_{j} and $a_{i j}=0$ otherwise. In this paper, we provide a combinatorial description of $\operatorname{det}(L(G))$ that generalizes that for the determinant of the Laplacian matrix of a signed graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, researchers have extensively studied the adjacency, Laplacian, normalized Laplacian and signless Laplacian matrices of an undirected graph. Then there has been a growing study of matrices associated to a signed graph $[9,14-17,30]$ and to an oriented graph [1,21]. Recently, researchers investigated matrices associated to a more general graph - a complex unit gain graph [20].

Let \mathbb{T} be the circle group which is the multiplicative group of all complex numbers with absolute value 1 . A \mathbb{T}-gain graph is arised from a simple graph with an orientation such that each orientation of an edge is given a complex unit of \mathbb{T}, called a gain, and the inverse of this complex unit assigned to the opposite orientation of such an edge. A \mathbb{T}-gain graph is also referred as a complex unit gain graph; see [20]. Let $\Gamma=(V, E)$ be the underlying graph of a \mathbb{T}-gain graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E \vec{E}=\vec{E}(\Gamma)$ is defined to be the set of oriented edges of such a gain graph. For a \mathbb{T}-gain graph, denote by $e_{i j}$ the oriented edge from v_{i} to v_{j} and by $\varphi\left(e_{i j}\right)$ the gain of $e_{i j}$. Hence a \mathbb{T}-gain graph is a triple $G=(\Gamma, \mathbb{T}, \varphi)$ consisting of an underlying graph $\Gamma=(V, E)$, the circle group \mathbb{T} and a function $\varphi: \vec{E}(\Gamma) \rightarrow \mathbb{T}$ (called the gain function), such that $\varphi\left(e_{i j}\right)=\varphi\left(e_{j i}\right)^{-1}$; see [20]. For simplicity, we sometimes write $G=(\Gamma, \varphi)$ for a \mathbb{T}-gain graph. For more properties of \mathbb{T}-gain graphs, one can see for example [3,12,23-29]. Note that the definition of a weighted directed graph by Bapat et al. [5] is same as a \mathbb{T}-gain graph.

Let $G=(\Gamma, \varphi)$ be a \mathbb{T}-gain graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A(G)=\left(a_{i j}\right)_{n \times n}$ of G is defined by

$$
a_{i j}= \begin{cases}\varphi\left(e_{i j}\right), & \text { if } v_{i} \text { is adjacent to } v_{j} \\ 0, & \text { otherwise }\end{cases}
$$

[^0]One can see that if v_{i} is adjacent to v_{j}, then $a_{i j}=\varphi\left(e_{i j}\right)=\left(\varphi\left(e_{j i}\right)\right)^{-1}=\bar{a}_{j i}$, the conjugate of $a_{j i}$. Denote by $D(G)=$ $\operatorname{diag}\left\{d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{2}\right)\right\}$ the degree diagonal matrix of the underlying graph Γ. The Laplacian matrix $L(G)=\left(l_{i j}\right)_{n \times n}$ of G is defined as $L(G)=D(G)-A(G)$. Therefore, both of $A(G)$ and $L(G)$ are Hermitian.

Let G be a \mathbb{T}-gain graph with Laplacian matrix $L(G)$. Bapat et al. [5] and Reff [20] independently point out that the definition of $L(G)$ coincides with the Laplacian matrix of the underlying graph of Γ if G has gain $1 ; L(G)$ coincides with the signless Laplacian matrix of Γ if G has gain -1 ; and $L(G)$ coincides with the Laplacian matrix of a signed graph (a signed graph is also named by Bapat et al. as a mixed graph; see for example $[4,5])$ if G has gains $\{1,-1\}$.

The graph obtained from a simple undirected graph by assigning an orientation to each of its edges is named as the oriented graph, denoted by \vec{G}. The skew adjacency matrix $A(\vec{G})=\left(a_{i j}\right)$ related to an oriented graph \vec{G} is defined as $a_{i j}=-a_{j i}=1$ if there exists an edge with tail v_{i} and head v_{j}; and $a_{i j}=0$ otherwise. The skew Laplacian matrix of \vec{G} is defined as $L(\vec{G})=D(\vec{G})-A(\vec{G})$; see [2], where $D(\vec{G})$ denotes the degree diagonal matrix of \vec{G}. Unlike the adjacency matrix and the Laplacian matrix of an undirected graph, there has been little research on the skew-adjacency matrix $A(\vec{G})$ and the skew Laplacian matrix $L(\vec{G})$ of an oriented graph \vec{G}, except that in enumeration of perfect matchings of a graph, see [18] and references therein, where the square of the number of perfect matchings of a graph \vec{G} with a Pfaffian orientation is the determinant of the skew-adjacency matrix $A(\vec{G})$. Recently, researchers investigated the spectral properties of matrices associated to an oriented graph; see [1,2,7,10,11,18,19,21,22]. By the definition of the adjacency matrix of a \mathbb{T}-gain graph, we can see that the adjacency matrix $A=\left(a_{i j}\right)_{n \times n}$ of a graph \mathbb{T} with gain set $\{\mathbf{i},-\mathbf{i}\}$ can be considered the skew adjacency matrix of an oriented graph multiplied by the complex number \mathbf{i}, that is, $a_{i j}=-a_{j i}=\mathbf{i}$ if there exists an edge from v_{i} to v_{j}; and $a_{i j}=0$ otherwise. Therefore, the Laplacian matrix of the graph \mathbb{T} with gain set $\{\mathbf{i},-\mathbf{i}\}$ can be viewed as another version of the Laplacian matrix of oriented graphs, that is, $L(\vec{G})=D(\vec{G})-\mathbf{i} A(\vec{G})$.

Therefore, most classical graph matrices, including Laplacian, normalized Laplacian, signless Laplacian matrices of a graph, and the Laplacian matrix of an oriented graph can be viewed as a special case of the Laplacian matrix of a \mathbb{T}-gain graph.

The classical Matrix Tree Theorem in its simplest form [6, pp.219] gives a combinatorial characterization of a minor of the Laplacian matrix of a graph in terms of spanning trees of the underlying graph. Then the Matrix Tree Theorem for signed graphs is given by Zaslavsky [23, Theorem 8A.4] and a combinatorial proof of the all minors matrix tree theorem is given by Chaiken [8]. In this paper, we provide a combinatorial description the determinant of the Laplacian matrix of an arbitrary \mathbb{T}-gain graph, which is a generalization for the determinant of the Laplacian matrix of a signed graph.

2. The determinant of a complex unit gain graph

Throughout this paper, all \mathbb{T}-gain graphs have simple underlying graphs, i.e., without loops and multi-edges, \bar{a} denotes the conjugate of the complex number a and A^{*} denotes the Hermitian transpose of the complex matrix A. Given a \mathbb{T}-gain graph G, a maximal connected subgraph of G is called a component of G. For convenience, in terms of defining subgraph and degree of a \mathbb{T}-gain graph, we focus only on its underlying graph. Certainly, each subgraph of a gain graph is also referred as a gain graph and preserves the gain of each edge, even if we do not state it specifically.

We first need to introduce the notion of the vertex-edge incidence matrix of a \mathbb{T}-gain graph, which was introduced in [29] for more general gain graphs. Let $G=(\Gamma, \varphi)$ be a \mathbb{T}-gain graph with vertex set $\Gamma(V)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\Gamma(\vec{E})=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Then the vertex-edge incidence matrix $M(G)=\left(m_{i j}\right)_{n \times m}$ of G is defined by

$$
m_{v_{i} e}= \begin{cases}1, & \text { if } e=e_{i j} \in \vec{E} \text { for some vertex } v_{j} \\ -\varphi\left(e_{j i}\right), & \text { if } e=e_{j i} \in \vec{E} \text { for some vertex } v_{j} \\ 0, & \text { otherwise }\end{cases}
$$

This definition can be considered as a particular incidence matrix related to a \mathbb{T}-gain graph defined by Reff [20]. From Lemma 3.1 in $[20] L(G)=M(G) M(G)^{*}$, then $L(G)$ is positive semi-definite and has a nonnegative determinant.

A connected \mathbb{T}-gain graph containing no cycles is called a \mathbb{T}-gain tree [20]. Since a \mathbb{T}-gain tree of order n contains exactly $n-1$ edges, its vertex-edge incidence matrix is an $n \times(n-1)$ Hermitian matrix. We begin with the following result, which is a consequence of Corollary 3.4 in [20] or of Theorem 2.1 in [27].

Lemma 2.1. Let T be an arbitrary \mathbb{T}-gain tree with Laplacian matrix $L(T)$. Then

$$
\operatorname{det}(L(T))=0
$$

Let $C=v_{1} e_{1,2} v_{2} \cdots v_{s-1} e_{s-1, s} v_{s}\left(=v_{1}\right)$ be a cycle with $s(\geq 3)$ edges, where v_{j} adjacent to v_{j+1} for $j=1,2 \cdots, s-1$ and v_{1} incident to v_{s}. The gain of C, denoted by $\varphi(C)$, is defined as

$$
\varphi(C)=\varphi\left(e_{1,2}\right) \varphi\left(e_{2,3}\right) \cdots \varphi\left(e_{s-1, s}\right) \varphi\left(e_{s, 1}\right)
$$

By the definition of the Laplacian matrix of a \mathbb{T}-gain graph, we have $l_{i, j}=-\varphi\left(e_{i, j}\right)$ whenever v_{i} adjacent to v_{j}, then $\varphi(C)$ can be defined in terms of the entries of its Laplacian matrix as

$$
\varphi(C)=(-1)^{s} l_{1,2} l_{2,3} \cdots l_{s-1, s} l_{s, 1}
$$

The following result shows that the determinant of the Laplacian matrix of a \mathbb{T}-gain cycle is determined by its gain.

https://daneshyari.com/en/article/8903140

Download Persian Version:

https://daneshyari.com/article/8903140

Daneshyari.com

[^0]: * Supported by National Natural Science Foundation of China (11571315, 11371028, 11401003, 11326220), Project of Educational Department of Anhui Province (KJ2014A009, KJ2016A044).
 * Corresponding author.

 E-mail addresses: wangy@ahu.edu.cn (Y. Wang), scgong@zust.edu.cn (S.-C. Gong), fanyz@ahu.edu.cn (Y.-Z. Fan).

