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a b s t r a c t

The Kneser graph K (n, k) has as vertices all k-element subsets of [n] = {1, 2, . . . , n} and an
edge between any two vertices that are disjoint. If n = 2k+ 1, then K (n, k) is called an odd
graph. Let n > 4 and 1 < k < n

2 . In the present paper, we show that if the Kneser graph
K (n, k) is of even order where n is an odd integer or both of the integers n, k are even,
then K (n, k) is a vertex-transitive non Cayley graph. Although, these are special cases of
Godsil (1980), unlike his proof that uses some very deep group-theoretical facts, ours uses
no heavy group-theoretic facts. We obtain our results by using some rather elementary
facts of number theory and group theory. We show that ‘almost all’ odd graphs are of even
order, and consequently are vertex-transitive non Cayley graph. Finally, we show that If
k > 4 is an even integer such that k is not of the form k = 2t for some t > 2, then the line
graph of the odd graph Ok+1 is a vertex-transitive non Cayley graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

In this paper, a graph Γ = (V , E) is considered as a finite, undirected, connected graph, without loops or multiple edges,
where V = V (Γ ) is the vertex-set and E = E(Γ ) is the edge-set. For every terminology and notation not defined here, we
follow [2,7,8,11].

The study of vertex-transitive graphs has a long and rich history in discrete mathematics. Prominent examples of vertex-
transitive graphs are Cayley graphs which are important in both theory as well as applications. Vertex-transitive graphs that
are not Cayley graphs, forwhichweuse the abbreviationVTNCG, have been an object of a systematic study since 1980 [3,9]. In
trying to recognize whether or not a vertex-transitive graph is a Cayley graph, we are left with the problem of determining
whether the automorphism group contains a regular subgroup [2]. The reference [1] is an excellent source for studying
graphs that are VTNCG.

Let n > 4 be an integer and 1 < k < n
2 . The Kneser graph K (n, k) is the graph with the k-element subsets of

[n] = {1, 2, . . . , n} as vertices, where two such vertices are adjacent if and only if they are disjoint. If n = 2k + 1, then
the graph K (2k + 1, k) is called an odd graph and is denoted by Ok+1. There are several good reasons for studying these
graphs. One is that the questions which arise are related to problems in other areas of combinatorics, such as combinatorial
set theory, coding theory, and design theory. A second reason is that the study of odd graphs tends to highlight the strengths
and weaknesses of the techniques currently available in graph theory, and that many interesting problems and conjectures
are encountered [3,4].

Amongst the various interesting properties of the Kneser graph K (n, k), we interested in the automorphism group of it
and we want to see how it acts on its vertex set. If θ ∈ Sym([n]), then

fθ : V (K (n, k)) −→ V (K (n, k)), fθ ({x1, . . . , xk}) = {θ (x1), . . . , θ (xk)}
is an automorphism of K (n, k) and the mappingψ : Sym([n]) −→ Aut(K (n, k)), defined by the ruleψ(θ ) = fθ is an injection.
In fact, Aut(K (n, k)) = {fθ |θ ∈ Sym([n])} ∼= Sym([n]) [8], and for this reasonwe identify fθ with θ when fθ is an automorphism

E-mail address:mirafzal.m@lu.ac.ir.

http://dx.doi.org/10.1016/j.disc.2017.08.032
0012-365X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2017.08.032
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:mirafzal.m@lu.ac.ir
http://dx.doi.org/10.1016/j.disc.2017.08.032


Please cite this article in press as: S. Morteza Mirafzal, More odd graph theory from another point of view, Discrete Mathematics (2017),
http://dx.doi.org/10.1016/j.disc.2017.08.032.

2 S. Morteza Mirafzal / Discrete Mathematics ( ) –

of K (n, k), and in such a situation we write θ instead of fθ . It is an easy task to show that the Kneser graph K (n, k) is a vertex-
transitive graph [8].

In 1979 Biggs [3] asked whether there are many values of k for which the odd graphs Ok+1 are Cayley graphs. In 1980
Godsil [9] proved (by using some very deep group-theoretical facts of group theory [5,10]) that for ‘almost all’ values of k,
the Kneser graph K (n, k) is a VTNCG. In the present paper, we show that if the Kneser graph K (n, k) is of even order where n
is an odd integer or both of the integers n, k are even, then K (n, k) is a VTNCG. We call the odd graph Ok+1 an even–odd graph
when its order is an even integer. We show that ‘almost all’ odd graphs are even–odd graphs, and consequently ‘almost all’
odd graphs are VTNCG. We obtain our results, by using some rather elementary facts of number theory and group theory.

Finally, we show that if k > 4 be an even integer and k is not of the form k = 2t for some t > 2, then the line graph of
the odd graph Ok+1 is a VTNCG.

2. Main results

Theorem 2.1. Let n, k are integers, n > 4, 2 ≤ k < n
2 and

( n
k

)
is an even integer. Then the Kneser graph K (n, k) is a vertex

transitive non Cayley graph if one of the following conditions holds:
(I) n is an odd integer;
(II) n and k are even integers.

Proof. We know that the Kneser graph K (n, k) is a vertex-transitive graph (for every positive integer n) [8], hence it is
sufficient to show that it is a non Cayley graph.

On the contrary, we assume that the Kneser graph K (n, k) is a Cayley graph. Then the group Aut(K (n, k)) = Sym([n]),
[n] = {1, 2, . . . , n} has a subgroup R, such that R acts regularly on the vertex-set of K (n, k). In particular, the order of R is( n
k

)
, and since ( by assumption ) this number is an even integer, then 2 divides |R|. Therefore, by the Cauchy’s theorem the

group R has an element θ of order 2. We know that each element of Sym([n]) has a unique factorization into disjoint cycles
of Sym([n]), hence we canwrite θ = ρ1ρ2...ρh, where each ρi is a cycle of Sym([n]) and ρi ∩ρj = ∅when i ̸= j. We also know
that if θ = ρ1ρ2...ρh, where each ρi is a cycle of Sym([n]) and ρi ∩ ρj = ∅, then the order of the permutation θ is the least
commonmultiple of the integers, |ρ1|, |ρ2|, ..., |ρh|. Since θ is of order 2, then the order of each ρi is 2 or 1, say, |ρi| ∈ {1, 2}.
In other words, each ρi is a transposition or a cycle of length 1. Let θ = τ1τ2...τa(i1)(i2)...(ib), where each τr is a transposition
and each is ∈ [n]. We now argue the cases (I) and (II).

(I) Let n = 2m+ 1, m > 1. Therefore, we have 2a+ b = n = 2m+ 1, where b is an odd integer, and hence it is non-zero.
Since b is a positive odd integer, then b − 1 is an even integer. we let d =

b−1
2 , so that d is a non-negative integer, d < b and

m = a + d. Let τr = (xryr ), 1 ≤ r ≤ a, where xr , yr ∈ [n]. Now, there are two cases:
(i) 2a ≤ k, (ii) 2a > k.
(ii) Suppose 2a ≤ k. Then there is some integer t such that 2a+ t = k, and since 2a+ b = 2m+ 1, then t ≤ b. Thus, for

transpositions τ1, τ2, . . . , τa and cycles (i1), . . . , (it ) of the cycle factorization of θ , the set v = {x1, y1, . . . , xa, ya, i1, i2, . . . , it}
is a k subset of the set [n], and thus it is a vertex of the Kneser graph K (n, k). Therefore, we have;

θ (v) = {θ (x1), θ (y1), . . . , θ (xa), θ (ya), θ (i1), . . . , θ (it )} =

{y1, x1, . . . , ya, xa, i1, i2, . . . , it} = v.

(iii) Suppose 2a > k. Then there is some integer c such that 2c ≤ k and 2(c + 1) > k. If 2c = k, then we take the vertex
v = {x1, y1, . . . , xc, yc}, and hence we have;
θ (v) = {θ (x1), θ (y1), . . . , θ (xc), θ (yc)} = {y1, x1, . . . , yc, xc} = v.
We now assume 2c < k, then 2c + 1 = k. Since b ≥ 1, then for transpositions τ1, τ2, . . . , τc and cycle (i1) of the cycle

factorization of θ , the set v = {x1, y1, . . . , xc, yc, i1} is a k-subset of the set [n], and therefore it is a vertex of the Kneser graph
K (n, k). Thus, we have;
θ (v) = {θ (x1), θ (y1), . . . , θ (xc), θ (yc), θ (i1)} = {y1, x1, . . . , yc, xc, i1} = v.
(II) Let n = 2m, m > 2 and k = 2e, 0 < 2e < m. Since θ = τ1τ2...τa(i1)(i2)...(ib), τr = (xryr ), 1 ≤ r ≤ a, where

xr , yr ∈ [n], then we have 2a + b = n = 2m, where b is an even integer. We now consider the following cases.
If a < e, then 2a < 2e, and hence there is some integer t such that 2a + t = 2e = k. Since 2a + b = n > 2k = 4e, then

t < b. Therefore, v = {x1, y1, . . . , xa, ya, i1, . . . , it} is a vertex of K (n, k).
If a ≥ e, then v = {x1, y1, . . . , xe, ye} is a vertex of K (n, k).
On the other hand, we can see that in every case we have θ (v) = v.
From the above argument, it follows that θ fixes a vertex of the Kneser graph K (n, k), which is a contradiction, because R

acts regularly on the vertex-set of K (n, k) and θ ∈ R is of order 2. This contradiction shows that the assertion of our theorem
is true. □

Remark 2.2. Since 1 < k < n
2 , hence if in the case (i) of the above theorem, we add the condition,

‘and assume that k is an even integer’
then we can construct two vertices v,w of K (n, k) such that θ (v) = v, θ (w) = w and v ∩ w = ∅. In fact, if k = 2l, l > 0,
and 2a ≤ k = 2l, we have no problem for constructing the vertices v and w. If 2a > k = 2l, then we can construct,
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