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a b s t r a c t

A graph G is minimally t-tough if the toughness of G is t and the deletion of any edge
from G decreases the toughness. Kriesell conjectured that for every minimally 1-tough
graph the minimum degree δ(G) = 2. We show that in every minimally 1-tough graph
δ(G) ≤

n
3 + 1. We also prove that every minimally 1-tough, claw-free graph is a cycle.

On the other hand, we show that for every positive rational number t any graph can be
embedded as an induced subgraph into a minimally t-tough graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let d(v) denote the degree of a vertex v,ω(G) denote
the number of components, α(G) denote the independence number and δ(G) denote the minimum degree of a graph G.

Definition 1.1. A graph G is k-connected, if it has at least k + 1 vertices and remains connected whenever fewer than k
vertices are removed. The connectivity of G, denoted by κ(G), is the largest k for which G is k-connected.

The more edges a graph has, the larger its connectivity can be, so the graphs, which are k-connected and have the fewest
edges for this property, may be interesting.

Definition 1.2. A graph G is minimally k-connected, if κ(G) = k and κ(G − e) < k for all e ∈ E(G).

Clearly, all degrees of a k-connected graph have to be at least k. On the other hand, Mader proved that the minimum
degree of every minimally k-connected graph is exactly k.

Theorem 1.3 (Mader [6]). Every minimally k-connected graph has a vertex of degree k.

The notion of toughness was introduced by Chvátal [2] in 1973.

Definition 1.4. Let t be a positive real number. A graph G is called t-tough, if ω(G − S) ≤ |S|/t for any cutset S of G. The
toughness of G, denoted by τ (G), is the largest t for which G is t-tough, taking τ (Kn) = ∞ for all n ≥ 1.

We say that a cutset S ⊆ V (G) is a tough set if ω(G − S) = |S|/τ (G).

We can define an analogue of minimally k-connected graphs for the notion of toughness.
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Fig. 1. A minimally 1-tough but not minimally 2-connected graph. The graph G − e is still 2-connected.

Definition 1.5. A graph G is said to be minimally t-tough, if τ (G) = t and τ (G − e) < t for all e ∈ E(G).

It follows directly from the definition that every t-tough graph is 2t-connected, implying κ(G) ≥ 2τ (G) for noncomplete
graphs. Therefore, the minimum degree of any 1-tough graph is at least 2. Kriesell conjectured that the analogue of Mader’s
theorem holds for minimally 1-tough graphs.

Conjecture 1.6 (Kriesell [4]). Every minimally 1-tough graph has a vertex of degree 2.

A 1-tough graph is always 2-connected, however, a minimally 1-tough graph is not necessarily minimally 2-connected
(see Fig. 1), so Mader’s theorem cannot be applied.

A natural approach to Kriesell’s conjecture is to prove upper bounds on δ(G) for minimally 1-tough graphs. Kriesell’s
conjecture states that δ(G) ≤ 2, and the best known upper bound follows easily from Dirac’s theorem, yielding δ(G) ≤ n/2.
Our main result is an improvement on the current upper bound by a constant factor.

Theorem 1.7. Every minimally 1-tough graph has a vertex of degree at most n
3 + 1.

Toughness is related to the existence of Hamiltonian cycles. If a graph contains a Hamiltonian cycle, then it is necessarily
1-tough. The converse is not true, a well-known counterexample is the Petersen graph. It is easy to see that every minimally
1-tough,Hamiltonian graph is a cycle, since after deleting an edge that is not containedby theHamiltonian cycle, the resulting
graph is still 1-tough.

Let us introduce a class of graphs that is frequently studied while dealing with problems related to Hamiltonian cycles.

Definition 1.8. The graph K1,3 is called a claw. A graph is said to be claw-free, if it does not contain a claw as an induced
subgraph.

Problems about connectivity in claw-free graphs can be handled more easily, since every vertex of a cutset is adjacent to
at most two components. We give a complete characterization of minimally 1-tough, claw-free graphs.

Theorem 1.9. If G is a minimally 1-tough, claw-free graph of order n ≥ 4, then G = Cn.

Thus we see that Kriesell’s conjecture is true in a very strong sense if the graph is claw-free. Or equivalently, the family
of minimally 1-tough, claw-free graphs is small. On the other hand, we show that in general the class of minimally 1-tough
graphs is large.

Theorem1.10. For every positive rational number t, any graph can be embedded as an induced subgraph into aminimally t-tough
graph.

The paper is organized as follows. In Section 2 we prove Theorem 1.7 which is the main result of this paper. In Section 3
we prove Theorem 1.9 and in Section 4 we prove Theorem 1.10.

2. Proof of the main result

Here we prove that every minimally 1-tough graph has a vertex of degree at most n
3 + 1. First we need a claim that has a

key role in the proofs, then we continue with two lemmas.

Claim 2.1. If G is a minimally 1-tough graph, then for every edge e ∈ E(G) there exists a vertex set S = S(e) ⊆ V (G) with

ω(G − S) = |S| and ω
(
(G − e) − S

)
= |S| + 1.

Proof. Let e be an arbitrary edge of G. Since G is minimally 1-tough, τ (G − e) < 1, so there exists a cutset S = S(e) ⊆

V (G − e) = V (G) in G − e satisfying that ω
(
(G − e) − S

)
> |S|. On the other hand, τ (G) = 1, so ω(G − S) ≤ |S|. This is only

possible if e connects two components of (G − e) − S, which means ω
(
(G − e) − S

)
= |S| + 1 and ω(G − S) = |S|. □
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