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a b s t r a c t

Pattern avoidance is a central topic in graph theory and combinatorics. Pattern avoidance
in matrices has applications in computer science and engineering, such as robot motion
planning and VLSI circuit design. A d-dimensional zero–one matrix A avoids another
d-dimensional zero–onematrix P if no submatrix of A can be transformed to P by changing
some ones to zeros. A fundamental problem is to study the maximum number of nonzero
entries in a d-dimensional n×· · ·×nmatrix that avoids P . Thismaximumnumber, denoted
by f (n, P, d), is called the extremal function.

We advance the extremal theory of matrices in two directions. The methods that we
use come from combinatorics, probability, and analysis. Firstly, we obtain non-trivial lower
and upper bounds on f (n, P, d) when n is large for every d-dimensional block permutation
matrix P . We establish the tight bound Θ(nd−1) on f (n, P, d) for every d-dimensional tuple
permutation matrix P . This tight bound has the lowest possible order that an extremal
function of a nontrivial matrix can ever achieve. Secondly, we show that the limit inferior
of the sequence {

f (n,P,d)
nd−1 } has a lower bound 2Ω(k1/2) for a family of k× · · · × k permutation

matrices P . We also improve the upper bound on the limit superior from 2O(k log k) to 2O(k)

for all k× · · · × k permutation matrices and show that the new upper bound also holds for
tuple permutation matrices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Pattern avoidance is a central topic in graph theory and combinatorics [2,7,14,16,18,21,24–26]. In this paper, we study
d-dimensional matrices (or arrays) with only two distinct entries, 0 and 1, that avoid certain patterns. We are interested in
the extremal problem of finding the largest number of ones in these matrices.

The extremal theory of matrices was initiated in papers [1,9,22] around 1990 to study specific problems arising in
computational and discrete geometry. Mitchell produced an algorithm for computing a shortest rectilinear path avoiding
rectilinear obstacles in the plane [22]. He showed that the complexity of this algorithm is bounded above by the solution
of the extremal problem of certain matrices. Bienstock and Győri [1] found an upper bound on the solution of the extremal
problem, thus bounding the complexity of the algorithm. Mitchell’s algorithm can be directly applied to motion planning
in robotics and wire routing in VLSI circuit design [20]. Füredi [9] used the extremal problem to derive an upper bound on
Erdős–Moser [4] problem of determining the maximum number of unit distances in a convex polygon.

Matrix extremal problems also find applications to graph theory and other areas of combinatorics. If we associate 2-
dimensional 0-1 matrices with ordered bipartite graphs by relating rows and columns to the two ordered partite sets of
vertices and interpreting ones as edges, then this extremal problem can be viewed as the Turán extremal problem for ordered
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bipartite graphs [23]. The most recent surge in interest in the extremal theory of matrices is due to the resolution of the
Stanley–Wilf conjecture in enumerative combinatorics using the extremal problem of matrices [17,21].

We denote a d-dimensional n1 ×· · ·×nd matrix by A =
(
ai1,...,id

)
, where 1 ≤ il ≤ nℓ for ℓ = 1, 2, . . . , d. Matrix A is called

a 0-1 matrix if all its entries are either 0 or 1. A multidimensional matrix is also called a multidimensional array in computer
science. We may view a d-dimensional 0-1 matrix A =

(
ai1,...,id

)
geometrically as a d-dimensional rectangular box of lattice

points with coordinates (i1, . . . , id). An ℓ-cross section of matrix A is the set of all the entries ai1,...,id whose ℓth coordinates
have the same value. An ℓ-row of matrix A is the collection of all the entries ai1,...,id whose coordinates other than the ℓth

coordinate have fixed values.
A d-dimensional k × · · · × k zero–one matrix is a permutation matrix if each of its ℓ-cross sections contains exactly one

nonzero entry for every ℓ = 1, . . . , d. The Kronecker product of two d-dimensional 0-1matricesM andN , denoted byM⊗N ,
is a d-dimensional matrix obtained by replacing each 1-entry ofM with a copy ofN and each 0-entry ofM with a zeromatrix
the same size as N .

We say that a d-dimensional 0-1 matrix A contains another 0-1 matrix P if A has a submatrix that can be transformed into
P by changing any number of ones to zeros. Otherwise, A is said to avoid P . Denote by f (n, P, d) the maximum number of
ones in a d-dimensional n × · · · × n zero–one matrix that avoids a given d-dimensional 0-1 matrix P . We are interested in
the asymptotic behavior of the extremal function f (n, P, d) for large n.

A motivation to study the extremal problem of multidimensional matrices comes from graph theory. A 2-dimensional
n×n zero–onematrix can be represented as an ordered bipartite graphwith partite sets of size n. Similarly, a d-dimensional
0-1 matrix corresponds to an ordered d-partite, d-uniform hypergraph. The extremal function f (n, P, d) is the maximum
number of hyperedges in an ordered d-partite, d-uniform hypergraphwhere each partite set has n vertices. Avoiding a given
pattern P amounts to avoiding the corresponding ordered hypergraph.

It is easy to obtain trivial lower and upper bounds on f (n, P, d).

Proposition 1.1. If P is a 0-1 matrix that contains at least two ones, then nd−1
≤ f (n, P, d) ≤ nd.

Proof. We can always choose a d-dimensional n × · · · × n zero–one matrix A, with 1-entries on a single ℓ-cross section for
some ℓ and 0-entries elsewhere, such that A avoids P . Matrix A has exactly nd−1 ones, so the left inequality follows.

The right inequality follows from the fact that every d-dimensional n × · · · × n zero–one matrix has a total of nd entries
and that the matrix hence has at most nd ones. □

The upper bound in Proposition 1.1 is one order higher than the lower bound. The main problem is to improve the lower
and upper bounds on f (n, P, d) so that their orders are as close as possible.

The two-dimensional case of d = 2 has been well studied. Füredi and Hajnal conjectured that f (n, P, 2) = O(n) for
all permutation matrices P [10]. Klazar showed that this conjecture implies the Stanley–Wilf conjecture [17]. Marcus and
Tardos proved the Füredi and Hajnal conjecture [21] and hence settled the Stanley–Wilf conjecture. Keszegh conjectured
that f (n, P, 2) = O(n) for all tuple permutation matrices P [15]. Geneson proved that the conjecture is true [11].

When R is a k1×k2 matrix of all ones, the extremal problem for f (n, R, 2) is thematrix version of the classical Zarankiewicz

problem. Kővári, Sós, and Turán found an upper bound O(n2− max(k1,k2)
k1k2 ) on f (n, R, 2) [19]. A lower bound Ω(n2− k1+k2−2

k1k2−1 ) was
also known [5]. Hesterberg extended these bounds to f (n, P ⊗ R, 2) where P is a permutation matrix [12,13].

Pach and Tardos showed that f (n, P, 2) is super-additive in n [23].When P is a permutationmatrix, the sequence {
f (n,P,2)

n }

is bounded because of f (n, P, 2) = O(n) and is therefore convergent by Fekete’s lemma on super-additive sequences [6]. The
limit is known as the Füredi–Hajnal limit and has recently attracted great attention [3,7,8]. Cibulka [3] showed that this limit
is always at least 2(k − 1) when P is a k × k permutation matrix and that the limit is exactly 2(k − 1) when P is the identity

matrix. Fox showed that the Füredi–Hajnal limit has a lower bound 2Ω(k
1
2 ) for a family of k × k permutation matrices [8].

Marcus and Tardos [21] showed that this limit has an upper bound 2O(k log k) for every k×k permutationmatrix P , and Fox [7]
improved this upper bound to 2O(k).

Little has been done on the multidimensional case. Klazar and Marcus [18] studied the extremal function when the
d-dimensional matrix P is a permutation matrix of size k × · · · × k and found f (n, P, d) = O(nd−1), generalizing the d = 2
results [21]. In particular, they showed that f (n,P,d)

nd−1 = 2O(k log k), which is the multidimensional generalization of the Marcus
and Tardos upper bound on the Füredi–Hajnal limit [21].

In this paper, we advance the extremal theory of matrices in two directions. In the first direction, we study the extremal
functions f (n, R, d) and f (n, P ⊗ R, d), where P is a permutation matrix and R is a k1 × · · · × kd matrix of ones only; matrix
P ⊗ R is called a block permutation matrix. We show that both f (n, R, d) and f (n, P ⊗ R, d) have a lower bound Ω(nd−β ) and
an upper bound O(nd−α), where α =

max(k1,...,kd)
k1·k2·····kd

and β =
k1+···+kd−d
k1·k2·····kd−1 . These bounds significantly improve the trivial ones

given in Proposition 1.1.
Both the lower bound Ω(nd−β ) and the upper bound O(nd−α) are in the same order as Θ(nd−1) whenever α = β . This is

exactly when only one of k1, . . . , kd of R is larger than 1; the corresponding P ⊗ R is called a tuple permutation matrix.
When α ̸= β , our results on f (n, R, d) generalize the Kővári–Sós–Turán upper bound [19] from two dimensions to higher

dimensions. Our results on f (n, P ⊗ R, d) also extend Hesterberg’s results [12] from d = 2 to d > 2.
When α = β , our result that f (n, P, d) = Θ(nd−1) for every d-dimensional tuple permutation matrix P , on one hand,

generalizes Geneson’s result [11] from d = 2 to d ≥ 2. On the other hand, even when d = 2 our ideas improve some key
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