ARTICLE IN PRESS

Discrete Mathematics (

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Hamiltonicity of edge chromatic critical graphs

Guantao Chen^{a,b}, Xiaodong Chen^{c,*}, Yue Zhao^d

^a Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States

^b Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

^c College of Science, Liaoning University of Technology, Jinzhou 121001, PR China

^d Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364, United States

ARTICLE INFO

Article history: Received 11 October 2016 Received in revised form 2 April 2017 Accepted 11 July 2017 Available online xxxx

Keywords: Edge coloring Critical graphs Hamiltonian cycles

ABSTRACT

Vizing conjectured that every edge chromatic critical graph contains a 2-factor. Believing that stronger properties hold for this class of graphs, Luo and Zhao (2013) showed that every edge chromatic critical graph of order *n* with maximum degree at least $\frac{6n}{7}$ is Hamiltonian. Furthermore, Luo et al. (2016) proved that every edge chromatic critical graph of order *n* with maximum degree at least $\frac{4n}{5}$ is Hamiltonian. In this paper, we prove that every edge chromatic critical graph of order *n* with maximum degree at least $\frac{3n}{4}$ is Hamiltonian. Our approach is inspired by the recent development of Kierstead path and Tashkinov tree techniques for multigraphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider only simple graphs unless these specified as multigraphs. We refer to [2] for notation and terminology not defined in this paper. Let *G* be a graph. For a $v \in V(G)$, we use $N_G(v)$ and $d_G(v)$ to denote the neighborhood and the degree of v in *G*, respectively. If there is no confusion, we will use N(v) and d(v) to denote $N_G(v)$ and $d_G(v)$, respectively. Denote by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degree of *G*, respectively. For a nonnegative integer *d*, let $V_d(G)$ and $V_{\geq d}(G)$ denote the set of vertices in V(G) with degree *d* and at least *d*, respectively. In this paper, we call a vertex with degree *j* a *j*-vertex. For a path *P* and $u, v \in V(P)$, let uPv denote the subpath of *P* from *u* to *v*. We use $\alpha(G)$ and c(G) to denote the independence number and circumference of *G*, respectively.

An *edge-k-coloring* of a graph *G* is an assignment of a color to each edge of *G* in such a way that every two adjacent edges are colored differently and at most *k* different colors are used. By default, we assume in this paper that the colors are elements of $\{1, 2, ..., k\}$. Denote by $C^k(G)$ the set of all edge-*k*-colorings of a graph *G*. The *chromatic index* of a graph *G*, denoted by $\chi'(G)$, is the minimum positive integer *k* with $C^k(G) \neq \emptyset$. Clearly, $\chi'(G) \ge \Delta(G)$. Vizing [14] on the other hand proved that $\chi'(G) \le \Delta + 1$. This leads to a classification of graphs into two classes: A graph *G* is of *class I* if $\chi'(G) = \Delta(G)$ and of *class II* if $\chi'(G) = \Delta(G) + 1$. An edge *e* of a graph *G* is a *critical edge* if $\chi'(G - e) = \chi'(G) - 1$. A Δ -*critical graph* is a critical class II graph with maximum degree Δ such that every edge is critical. It is of interest to understand the structures of Δ -critical graphs.

In 1965, Vizing [14] conjectured that every Δ -critical graph contains a 2-factor, which is named Vizing's 2-factor conjecture. In 1968, Vizing [16] proposed a weaker conjecture, named Vizing's independence number conjecture, that $\alpha(G) \leq \frac{n}{2}$ for every Δ -critical graph of order *n*. Vizing's independence number conjecture was verified by Luo and Zhao [10] for Δ -critical graphs of order *n* with $\Delta \geq \frac{n}{2}$, and by Grunewald and Steffen [7] for Δ -critical graphs with many edges, including all overfull graphs. Chen and Shan [4] verified Vizing's 2-factor conjecture for Δ -critical graphs of order *n* with $\Delta \geq \frac{n}{2}$.

* Corresponding author.

E-mail address: xiaodongchen74@126.com (X. Chen).

http://dx.doi.org/10.1016/j.disc.2017.07.013 0012-365X/© 2017 Elsevier B.V. All rights reserved.

2

G. Chen et al. / Discrete Mathematics (())

Circumferences of Δ -critical graphs have been a subject of studies. Vizing [14] showed that $c(G) > \Delta + 1$ for every Δ -critical graph. Fiorini and Wilson [12] showed that $c(G) > 2(\log(n-1)(\Delta-2) - \log \delta)/\log(\Delta-1)$ for any Δ -critical graph of order *n* with minimum degree δ . On the other hand, Fiorini [6] showed there exist infinitely many Δ -critical graphs *G* of order *n* with $c(G) \leq 3(\Delta + 1)2^{q(n)}$, where $q(n) = (\log n - \log(\Delta - 1))/\log(2\Delta - 2)$. Consequently, there are infinitely many non-Hamiltonian Δ -critical graphs. By increasing maximum degrees in terms the orders of graphs, Luo and Zhao [9] proved that every Δ -critical graph G of order n with $\Delta \geq \frac{6n}{7}$ is Hamiltonian. Furthermore, Luo, Miao and Zhao [11] improved the lower bound to $\Delta \geq \frac{4n}{5}$. It is interesting to determine the minimum positive real number β such that every Δ -critical graph of order *n* with $\Delta \stackrel{\checkmark}{\geq} \beta n$ is Hamiltonian. In [9], Luo and Zhao also proved that if *G* is an overfull Δ -critical graph, then $c(G) > \min\{2\Delta, n\}$. So, every Δ -critical overfull graph with $\Delta > n/2$ is Hamiltonian. Based on Hilton's overfull graph conjecture [5], we made the following conjecture.

Conjecture 1. Let G be a Δ -critical graph of order n. If $\Delta > n/3$, then G is Hamiltonian.

In this paper, we prove the following result.

Theorem 1. If G is a Δ -critical graph of order n with $\Delta \geq \frac{3n}{4}$, then G is Hamiltonian.

Our proof is inspired by the recent development of Tashkinov tree technique for graph edge coloring for multigraphs. Kostochka and Stiebitz [13] obtained a nice result for Kierstead paths of order 4. We extend the result to a structure of a broom. We also use a result of Brandt and Veldman's circumference formula in terms of degree sum of two adjacent vertices.

2. Lemmas and notation

The following results about Δ -critical graph are needed in our proof.

Lemma 1 (Vizing [15]). If xy is an edge of a Δ -critical graph G, then x is adjacent to at least $\Delta - d(y) + 1$ vertices $z (z \neq y)$ with degree Δ .

Lemma 2 (Luo and Zhao [11]). Let G be a Δ -critical graph and d be a positive integer. Then, for any d-vertex x, there does not exist a vertex subset U satisfying the following three conditions.

- 1. $x \notin U$ and |U| = d 1; 2. $d(u) \le \frac{\Delta d + 1}{2}$ for each vertex $u \in U$; 3. there are d 1 distinct neighbors of x, each of which is adjacent to a distinct vertex in U.

Lemma 3 (Luo, Miao and Zhao [9]). Let G be a Δ -critical graph and A be an independent set of G. If $A \cap V_{\Delta} = \emptyset$, then |N(A)| > |A|.

Lemma 4 (Brandt and Veldman [3]). Let $G \neq K_{1,n-1}$ be a graph of order n. If $d(x) + d(y) \ge n$ for any edge xy of G, then there exists an independent set S with $S \cup N(S) \neq V(G)$ such that $c(G) = n - \max\{|S| - |N(S)| + 1, 0\}$.

Lemma 5. Let *G* be a Δ -critical graph of order *n* with $\Delta \geq \frac{n}{2}$. If $d(x) + d(y) \geq n$ for any edge xy of *G*, then *G* is Hamiltonian.

Proof. Suppose on the contrary that there exists a graph G satisfying the above conditions but is not Hamiltonian. By Lemma 4, *G* contains an independent set *S* with $S \cup N(S) \neq V(G)$ such that $n - \max\{|S| - |N(S)| + 1, 0\} \leq n - 1$. Thus $|S| - |N(S)| + 1 \ge 1$. Since $S \cup N(S) \ne V(G)$, S is not a maximum independent set. Since $|S| - |N(S)| + 1 \ge 1$, we have $|S| \ge |N(S)|$. By Lemma 3, S contains a Δ -vertex v. Then $|S| \ge |N(S)| \ge d(v) = \Delta \ge \frac{n}{2}$. It follows that $|S| = |N(S)| = \frac{n}{2}$, and hence *S* is a maximal independent set, giving a contradiction. \Box

Let *G* be a graph with $\chi'(G) \leq k$ and let φ be an edge-*k*-coloring of *G*. For any two different colors *i* and *j*, an *i* – *j* edge chain is a component of the graph formed by all edges colored i and j in the coloring φ ; it is a path or an even cycle. If we include isolated vertices as i - j edge chains, then for any vertex $v \in V(G)$ there is a unique i - j edge chain $L_{i,j}(v)$ containing v. For any $v \in V(G)$, let $\varphi(v) = \{\varphi(e) : e \in E(G) \text{ and } e \text{ is incident to } v\}$, and $\overline{\varphi}(v) = \{1, 2, \dots, k\} - \varphi(v)$. We call $\varphi(v)$ and $\overline{\varphi}(v)$ the set of colors present and the set of colors missing at v, respectively. We call a vertex set $S \subseteq V(G)$ elementary if for any two distinct vertices $u, v \in S, \overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset$.

Let *G* be a graph and $e \in E(G)$ such that $\chi'(G - e) \leq k$, and let $\varphi \in C^k(G - e)$. A *Kierstead path* with respect to *e* and φ is defined to be a sequence $K = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \ge 1$ consisting of edges e_1, \dots, e_p and vertices y_0, \dots, y_p satisfying the following two conditions:

- (1) The vertices y_0, \ldots, y_p are distinct, $e_1 = e$ and $e_i \in E_G(y_i, y_{i-1})$ for $1 \le i \le p$;
- (2) For every edge e_i with $2 \le i \le p$, there is a vertex y_i with $0 \le j < i$ such that $\varphi(e_i) \in \overline{\varphi}(y_i)$.

Please cite this article in press as: G. Chen, et al., Hamiltonicity of edge chromatic critical graphs, Discrete Mathematics (2017), http://dx.doi.org/10.1016/j.disc.2017.07.013.

Download English Version:

https://daneshyari.com/en/article/8903215

Download Persian Version:

https://daneshyari.com/article/8903215

Daneshyari.com