Hamiltonicity of edge chromatic critical graphs

${ }^{\text {a }}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States
${ }^{\text {b }}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
${ }^{\text {c }}$ College of Science, Liaoning University of Technology, Jinzhou 121001, PR China
${ }^{\text {d }}$ Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364, United States

ARTICLE INFO

Article history:

Received 11 October 2016
Received in revised form 2 April 2017
Accepted 11 July 2017
Available online xxxx

Keywords:

Edge coloring
Critical graphs
Hamiltonian cycles

Abstract

Vizing conjectured that every edge chromatic critical graph contains a 2-factor. Believing that stronger properties hold for this class of graphs, Luo and Zhao (2013) showed that every edge chromatic critical graph of order n with maximum degree at least $\frac{6 n}{7}$ is Hamiltonian. Furthermore, Luo et al. (2016) proved that every edge chromatic critical graph of order n with maximum degree at least $\frac{4 n}{5}$ is Hamiltonian. In this paper, we prove that every edge chromatic critical graph of order n with maximum degree at least $\frac{3 n}{4}$ is Hamiltonian. Our approach is inspired by the recent development of Kierstead path and Tashkinov tree techniques for multigraphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider only simple graphs unless these specified as multigraphs. We refer to [2] for notation and terminology not defined in this paper. Let G be a graph. For a $v \in V(G)$, we use $N_{G}(v)$ and $d_{G}(v)$ to denote the neighborhood and the degree of v in G, respectively. If there is no confusion, we will use $N(v)$ and $d(v)$ to denote $N_{G}(v)$ and $d_{G}(v)$, respectively. Denote by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degree of G, respectively. For a nonnegative integer d, let $V_{d}(G)$ and $V_{\geq d}(G)$ denote the set of vertices in $V(G)$ with degree d and at least d, respectively. In this paper, we call a vertex with degree j a j-vertex. For a path P and $u, v \in V(P)$, let $u P v$ denote the subpath of P from u to v. We use $\alpha(G)$ and $c(G)$ to denote the independence number and circumference of G, respectively.

An edge-k-coloring of a graph G is an assignment of a color to each edge of G in such a way that every two adjacent edges are colored differently and at most k different colors are used. By default, we assume in this paper that the colors are elements of $\{1,2, \ldots, k\}$. Denote by $\mathcal{C}^{k}(G)$ the set of all edge- k-colorings of a graph G. The chromatic index of a graph G, denoted by $\chi^{\prime}(G)$, is the minimum positive integer k with $\mathcal{C}^{k}(G) \neq \emptyset$. Clearly, $\chi^{\prime}(G) \geq \Delta(G)$. Vizing [14] on the other hand proved that $\chi^{\prime}(G) \leq \Delta+1$. This leads to a classification of graphs into two classes: A graph G is of class I if $\chi^{\prime}(G)=\Delta(G)$ and of class II if $\chi^{\prime}(G)=\Delta(G)+1$. An edge e of a graph G is a critical edge if $\chi^{\prime}(G-e)=\chi^{\prime}(G)-1$. A Δ-critical graph is a critical class II graph with maximum degree Δ such that every edge is critical. It is of interest to understand the structures of Δ-critical graphs.

In 1965, Vizing [14] conjectured that every Δ-critical graph contains a 2 -factor, which is named Vizing's 2-factor conjecture. In 1968, Vizing [16] proposed a weaker conjecture, named Vizing's independence number conjecture, that $\alpha(G) \leq \frac{n}{2}$ for every Δ-critical graph of order n. Vizing's independence number conjecture was verified by Luo and Zhao [10] for Δ-critical graphs of order n with $\Delta \geq \frac{n}{2}$, and by Grunewald and Steffen [7] for Δ-critical graphs with many edges, including all overfull graphs. Chen and Shan [4] verified Vizing's 2-factor conjecture for Δ-critical graphs of order n with $\Delta \geq \frac{n}{2}$.

[^0]Circumferences of Δ-critical graphs have been a subject of studies. Vizing [14] showed that $c(G) \geq \Delta+1$ for every Δ-critical graph. Fiorini and Wilson [12] showed that $c(G) \geq 2(\log (n-1)(\Delta-2)-\log \delta) / \log (\Delta-1)$ for any Δ-critical graph of order n with minimum degree δ. On the other hand, Fiorini [6] showed there exist infinitely many Δ-critical graphs G of order n with $c(G) \leq 3(\Delta+1) 2^{q(n)}$, where $q(n)=(\log n-\log (\Delta-1)) / \log (2 \Delta-2)$. Consequently, there are infinitely many non-Hamiltonian Δ-critical graphs. By increasing maximum degrees in terms the orders of graphs, Luo and Zhao [9] proved that every Δ-critical graph G of order n with $\Delta \geq \frac{6 n}{7}$ is Hamiltonian. Furthermore, Luo, Miao and Zhao [11] improved the lower bound to $\Delta \geq \frac{4 n}{5}$. It is interesting to determine the minimum positive real number β such that every Δ-critical graph of order n with $\Delta \geq \beta n$ is Hamiltonian. In [9], Luo and Zhao also proved that if G is an overfull Δ-critical graph, then $c(G) \geq \min \{2 \Delta, n\}$. So, every Δ-critical overfull graph with $\Delta \geq n / 2$ is Hamiltonian. Based on Hilton's overfull graph conjecture [5], we made the following conjecture.

Conjecture 1. Let G be a Δ-critical graph of order n. If $\Delta>n / 3$, then G is Hamiltonian.
In this paper, we prove the following result.
Theorem 1. If G is a Δ-critical graph of order n with $\Delta \geq \frac{3 n}{4}$, then G is Hamiltonian.
Our proof is inspired by the recent development of Tashkinov tree technique for graph edge coloring for multigraphs. Kostochka and Stiebitz [13] obtained a nice result for Kierstead paths of order 4. We extend the result to a structure of a broom. We also use a result of Brandt and Veldman's circumference formula in terms of degree sum of two adjacent vertices.

2. Lemmas and notation

The following results about Δ-critical graph are needed in our proof.
Lemma 1 (Vizing [15]). If $x y$ is an edge of a Δ-critical graph G, then x is adjacent to at least $\Delta-d(y)+1$ vertices $z(z \neq y)$ with degree Δ.

Lemma 2 (Luo and Zhao [11]). Let G be a Δ-critical graph and d be a positive integer. Then, for any d-vertex x, there does not exist a vertex subset U satisfying the following three conditions.

1. $x \notin U$ and $|U|=d-1$;
2. $d(u) \leq \frac{\Delta-d+1}{2}$ for each vertex $u \in U$;
3. there are $d-1$ distinct neighbors of x, each of which is adjacent to a distinct vertex in U.

Lemma 3 (Luo, Miao and Zhao [9]). Let G be a Δ-critical graph and A be an independent set of G. If $A \cap V_{\Delta}=\emptyset$, then $|N(A)|>|A|$.
Lemma 4 (Brandt and Veldman [3]). Let $G \neq K_{1, n-1}$ be a graph of order n. If $d(x)+d(y) \geq n$ for any edge $x y$ of G, then there exists an independent set S with $S \cup N(S) \neq V(G)$ such that $c(G)=n-\max \{|S|-|N(S)|+1,0\}$.

Lemma 5. Let G be a Δ-critical graph of order n with $\Delta \geq \frac{n}{2}$. If $d(x)+d(y) \geq n$ for any edge $x y$ of G, then G is Hamiltonian.
Proof. Suppose on the contrary that there exists a graph G satisfying the above conditions but is not Hamiltonian. By Lemma $4, G$ contains an independent set S with $S \cup N(S) \neq V(G)$ such that $n-\max \{|S|-|N(S)|+1,0\} \leq n-1$. Thus $|S|-|N(S)|+1 \geq 1$. Since $S \cup N(S) \neq V(G), S$ is not a maximum independent set. Since $|S|-|N(S)|+1 \geq 1$, we have $|S| \geq|N(S)|$. By Lemma 3, S contains a Δ-vertex v. Then $|S| \geq|N(S)| \geq d(v)=\Delta \geq \frac{n}{2}$. It follows that $|S|=|N(S)|=\frac{n}{2}$, and hence S is a maximal independent set, giving a contradiction.

Let G be a graph with $\chi^{\prime}(G) \leq k$ and let φ be an edge- k-coloring of G. For any two different colors i and j, an $i-j$ edge chain is a component of the graph formed by all edges colored i and j in the coloring φ; it is a path or an even cycle. If we include isolated vertices as $i-j$ edge chains, then for any vertex $v \in V(G)$ there is a unique $i-j$ edge chain $L_{i, j}(v)$ containing v. For any $v \in V(G)$, let $\varphi(v)=\{\varphi(e): e \in E(G)$ and e is incident to $v\}$, and $\bar{\varphi}(v)=\{1,2, \ldots, k\}-\varphi(v)$. We call $\varphi(v)$ and $\bar{\varphi}(v)$ the set of colors present and the set of colors missing at v, respectively. We call a vertex set $S \subseteq V(G)$ elementary if for any two distinct vertices $u, v \in S, \bar{\varphi}(u) \cap \bar{\varphi}(v)=\emptyset$.

Let G be a graph and $e \in E(G)$ such that $\chi^{\prime}(G-e) \leq k$, and let $\varphi \in \mathcal{C}^{k}(G-e)$. A Kierstead path with respect to e and φ is defined to be a sequence $K=\left(y_{0}, e_{1}, y_{1}, \ldots, e_{p}, y_{p}\right)$ with $p \geq 1$ consisting of edges e_{1}, \ldots, e_{p} and vertices y_{0}, \ldots, y_{p} satisfying the following two conditions:
(1) The vertices y_{0}, \ldots, y_{p} are distinct, $e_{1}=e$ and $e_{i} \in E_{G}\left(y_{i}, y_{i-1}\right)$ for $1 \leq i \leq p$;
(2) For every edge e_{i} with $2 \leq i \leq p$, there is a vertex y_{j} with $0 \leq j<i$ such that $\varphi\left(e_{i}\right) \in \bar{\varphi}\left(y_{j}\right)$.

https://daneshyari.com/en/article/8903215

Download Persian Version:

https://daneshyari.com/article/8903215

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: xiaodongchen74@126.com (X. Chen).

