A new formula for the decycling number of regular graphs ${ }^{\star}$

Han Ren ${ }^{\text {a,b }}$, Chao Yang ${ }^{\text {a,** }}$, Tian-xiao Zhao ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, East China Normal University, Shanghai, 200241, PR China
${ }^{\text {b }}$ Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai, 200241, PR China
c Department of Mathematical Science, Tsinghua University, Beijing, 100084, PR China

ARTICLE INFO

Article history:

Received 24 March 2016
Received in revised form 19 December 2016
Accepted 8 July 2017
Available online xxxx

Keywords:

Decycling number
Margin number
Cycle rank
Betti deficiency
Regular graphs

Abstract

The decycling number $\nabla(G)$ of a graph G is the smallest number of vertices which can be removed from G so that the resultant graph contains no cycle. A decycling set containing exactly $\nabla(G)$ vertices of G is called a ∇-set. For any decycling set S of a k-regular graph G, we show that $|S|=\frac{\beta(G)+m(S)}{k-1}$, where $\beta(G)$ is the cycle rank of $G, m(S)=c+|E(S)|-1$ is the margin number of S, c and $|E(S)|$ are, respectively, the number of components of $G-S$ and the number of edges in $G[S]$. In particular, for any ∇-set S of a 3-regular graph G, we prove that $m(S)=\xi(G)$, where $\xi(G)$ is the Betti deficiency of G. This implies that the decycling number of a 3-regular graph G is $\frac{\beta(G)+\xi(G)}{2}$. Hence $\nabla(G)=\left\lceil\frac{\beta(G)}{2}\right\rceil$ for a 3regular upper-embeddable graph G, which concludes the results in [Gao et al., 2015, Wei and Li, 2013] and solves two open problems posed by Bau and Beineke (2002). Considering an algorithm by Furst et al., (1988), there exists a polynomial time algorithm to compute $Z(G)$, the cardinality of a maximum nonseparating independent set in a 3-regular graph G, which solves an open problem raised by Speckenmeyer (1988). As for a 4-regular graph G, we show that for any ∇-set S of G, there exists a spanning tree T of G such that the elements of S are simply the leaves of T with at most two exceptions providing $\nabla(G)=\left\lceil\frac{\beta(G)}{3}\right\rceil$. On the other hand, if G is a loopless graph on n vertices with maximum degree at most 4 , then

$$
\nabla(G) \leq \begin{cases}\frac{n+1}{n^{2}}, & \text { if } G \text { is 4-regular } \\ \frac{2}{2}, & \text { otherwise }\end{cases}
$$

The above two upper bounds are tight, and this makes an extension of a result due to Punnim (2006).

Published by Elsevier B.V.

1. Introduction

Let $G=(V(G), E(G))$ be a graph. Graphs considered in this paper are loopless finite, connected and multiple edges are permitted. For general theoretic notations, we follow [5]. The minimum number of edges whose removal eliminates all cycles in a given graph has been known as the cycle rank of the graph, and this parameter has a simple expression: $\beta(G)=|E(G)|-|V(G)|+w$ (see [10]), where w is the number of components of G. The corresponding problem of eliminating all cycles from a graph by means of deletion of vertices goes back at least to the work of Kirchhoff on spanning trees in [11].

[^0]A vertex set $S \subseteq V$ is called a decycling set of G if $G-S$ is acyclic. The cardinality of a minimum decycling set of G is denoted by $\nabla(G)$ (or ∇ for short). A decycling set contains exactly $\nabla(G)$ vertices of G is called a ∇-set. Vertices of a decycling set are labeled by " \bullet " in the following figures. Let $m(S)=c+|E(S)|-1$ be the margin number of a decycling set S which measures the gap between S and a ∇-set of G, where c and $|E(S)|$ are, respectively, the number of components of $G-S$ and the number of edges in $G[S]$. The problem of determining the decycling number of an arbitrary graph is NP-complete (see [12]). In fact, computing decycling numbers of the following families of graphs are shown to be NP-hard: planar graphs, bipartite graphs and perfect graphs. One may see [2] as a brief survey.

For any two graphs G and H, their Cartesian product $G \times H$ is defined as: $V(G \times H)=\left\{\left(u_{i}, v_{j}\right) \mid i=1,2, \ldots, m, j=\right.$ $1,2, \ldots, n\}$ and $E(G \times H)=\left\{\left(u_{i}, v_{j}\right)\left(u_{r}, v_{s}\right) \mid i=r, v_{j} v_{s} \in E(H)\right.$ or $\left.j=s, u_{i} u_{r} \in E(G)\right\}$, where $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} . \Delta(G)$ (or Δ for short) represents the maximum degree of a graph G. Let $d_{G}(x)$ and $N_{E}(x)$ (or $N_{E}(S)$) be, respectively, the degree of vertex x and the set of edges incident to vertex x (or the vertex in S, and the edges between vertices in S also belong to $N_{E}(S)$) of G.

In this paper, we consider the problem of the decycling number from a new perspective: the effects of graph embeddings on the decycling number of graphs. Given a connected graph G and a surface P, we say that G can be embedded into P if there exists a polyhedron \sum on P such that the 1 -skeleton of \sum has a subgraph homeomorphic to G. The components of $\sum-G$ are called the faces of the embedding. When each face is homeomorphic to an open disc, the embedding is called a cellular. The maximum genus of a connected graph G, denoted by $\gamma_{M}(G)$, is the largest genus of an orientable surface on which G admits a cellular embedding. Let T be a spanning tree of a connected graph G. The subgraph $G-E(T)$ of G is called a co-tree of G. Note that the number of edges in any co-tree of G is just the cycle rank $\beta(G)$. The Betti deficiency of G, denoted by $\xi(G)$, is the minimum number of odd components (i.e., the components containing odd number of edges) among co-trees of G. Any spanning tree whose co-tree achieves the Betti deficiency $\xi(G)$ is called a Xuong-tree, and denoted by T_{X}. A graph G is upper-embeddable if and only if $\xi(G) \leq 1[13,23]$.

The maximum genus of a graph can be characterized as follows:

Lemma 1.1 ([23]). Let G be a connected graph. Then

$$
\gamma_{M}(G)=\frac{\beta(G)-\xi(G)}{2}
$$

Lemma 1.2 ([19]). Let G^{\prime} be a subdivision of a connected graph G. Then $\nabla\left(G^{\prime}\right)=\nabla(G)$.
Xuong defined an edge-partition of a co-tree in [23].
Lemma 1.3 ([23]). Let G be a connected graph and T_{X} a Xuong-tree of G. Then there exists an edge-partition of $E(G)-E\left(T_{X}\right)$ as follows:

$$
E(G)-E\left(T_{X}\right)=\left\{e_{1}, e_{2}\right\} \cup\left\{e_{3}, e_{4}\right\} \cup \cdots \cup\left\{e_{2 m-1}, e_{2 m}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}
$$

where (i) $m=\gamma_{M}(G), s=\xi(G)$; (ii) for any $i=1,2, \ldots, m, e_{2 i-1} \cap e_{2 i} \neq \emptyset$, and $\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}$ is a matching of G.
Let T_{X} be a Xuong-tree and the edge-partition of $E(G)-E\left(T_{X}\right)$ be defined as Lemma 1.3. Consider a set

$$
S_{X}=\left\{u_{i} \mid u_{i} \in e_{2 i-1} \cap e_{2 i}, 1 \leq i \leq m\right\} \cup\left\{v_{j} \mid v_{j} \text { is an end of } f_{j}, 1 \leq j \leq s\right\} .
$$

Then $G-S_{X}$ contains no cycle (since removing S_{X} from G will eliminate all the possible fundamental cycles of T_{X}) and hence S_{X} is a decycling set of G, that is, $\nabla(G) \leq\left|S_{X}\right|$.

Corollary 1.1. $\nabla(G) \leq\left|S_{X}\right| \leq \gamma_{M}(G)+\xi(G)$ holds for any graph G.
These are new bounds for the decycling number $\nabla(G)$ of a graph G. In some cases, dense graphs for example, the bounds cannot work well since the values of $\left|S_{X}\right|$ and $\gamma_{M}(G)$ may be too big. It is clear that the bound $\left|S_{X}\right|$ heavily depends on the choice of Xuong-tree T_{X} since different T_{X} may lead to quite different value of $\left|S_{X}\right|$. For instance, the wheel graph $W_{1, n}=K_{1} \vee C_{n}$ with n spokes has $\nabla\left(W_{1, n}\right)=2$. If one chooses a Xuong-tree $K_{1, n}$ as a spanning tree of $W_{1, n}$, then the corresponding $\left|S_{X}\right|$ equals to $\left\lceil\frac{n}{2}\right\rceil$; meanwhile, a Hamilton path in $W_{1, n}$ will determine another S_{X} whose number of elements reaches the best value $\nabla\left(W_{1, n}\right)=2$. Therefore, how to find a set $S_{X} \subseteq V(G)$ with the smallest size is a key to determine $\nabla(G)$.

The paper is organized as follows.
In Section 2, we prove that $|S|=\frac{\beta(G)+m(S)}{k-1}$ for any decycling set S of a k-regular graph G, which implies that S is a ∇-set if and only if $m(S)$ is minimum. This formula, although contains an uncertain parameter $m(S)$, can be used to locate the lower bounds of the decycling number for regular graphs. Many examples show that the lower bounds may be tight, see [4,9,16,17,19,21,22]. Our result shows that $\nabla\left(C_{m} \times C_{n}\right)=\frac{m n+m(S)+1}{3}$ for a ∇-set S of $C_{m} \times C_{n}$, which equals to Pike's result $\nabla\left(C_{m} \times C_{n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil(m, n \neq 4)$ when $m(S) \leq 1$ (see [15]). Therefore, this provides a way to locate the exact value of $\nabla(G)$ (to find a decycling set S with the minimum $m(S)$). In addition, this formula also implies that for some (4-regular) graphs G of order n, the margin number $m(S)$ may be a linear function on n (i.e., $m(S)$ tends to infinity as $n \rightarrow \infty$). For instance, a toroidal 4-regular graph G containing n disjoint $K_{5}-e$'s (see Fig. 3) whose decycling number is $2 n+1$ and its margin number $m(S)=n+2$ for a $\nabla-$ set S.

https://daneshyari.com/en/article/8903218

Download Persian Version:

https://daneshyari.com/article/8903218

Daneshyari.com

[^0]: Supported by National Natural Science Foundation of China under Grant No. 11171114 and No. 11401576, Science and Technology Commission of Shanghai Municipality under Grant No. 13dz2260400.

 * Corresponding author.

 E-mail address: yangchaomath0524@163.com (C. Yang).

