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Xo(G). A graph is normal if it contains no isolated edges. Let G be a normal graph, and let
A(G)and x'(G) denote the maximum degree and the chromatic index of G, respectively. We
modify the previously known techniques of edge-partitioning to prove that x,(G) < 2x'(G),
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Neighbor-distinguishing edge coloring which implies that x,(G) < 2A(G)+2. This improves the resultin Wang et al. (2015), which
Maximum degree states that x,(G) < %A(G) for any normal graph. We also prove that x,(G) < 2A(G) when
Edge-partition A(G) = 2%, kis an integer with k > 2.
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1. Introduction

All graphs considered in this paper are simple and finite. Let V(G), E(G), and A(G) denote the vertex set, the edge set, and
the maximum degree of a graph G, respectively. Let Ng(v) and deg;(v) = |Ng(v)| denote the set of neighbors and the degree
of a vertex v in G, respectively. An edge-partition of a graph G into subgraphs Gy, ..., G, is a decomposition of G such that
E(G) = ULE(G,») and E(G;) N E(G;) = @ for any pairi # j. For a graph G and any S C E(G), the edge-induced subgraph G[S] is
the subgraph of G whose edge set is S and whose vertex set consists of all end vertices of the edges in S.

A proper edge k-coloring of a graph G is a function ¢ : E(G) — {1, ..., k} such that every two adjacent edges receive
different colors. The chromatic index x'(G) of a graph G is the minimum positive integer k for which G has a proper edge
k-coloring. Given an edge k-coloring ¢ of G, we use Cy(v) to denote the set of colors assigned to the edges incident with
v. The edge coloring ¢ is called neighbor-distinguishing (in some papers adjacent vertex distinguishing), or nde-coloring for
short, if C»(u) # Cy(v) for any pair of adjacent vertices u and v.

The neighbor-distinguishing index x,(G) of a graph G is the smallest integer k such that G has a k-nde-coloring. A graph G
is normal if it contains no isolated edges. It is obvious that G has an nde-coloring if and only if G is normal; thus we consider
only normal graphs when examining an nde-coloring.

Zhang, Liu and Wang [7] introduced and investigated a neighbor-distinguishing edge coloring of graphs, where they
proposed the following conjecture.

Conjecture 1. If G is a connected normal graph different from a 5-cycle, then x,(G) < A(G) + 2.

Akbari, Bidkhori and Nosrati [1] proved that y,(G) < 3A(G) for any normal graph G. Zhang, Wang and Lih [6] proved a
better upper bound, ,(G) < %A(G) +5. Wang, Wang and Huo [5] improved this result by showing that x/(G) < %A(G). Our
main result is the following improvement of the upper bound for .
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Theorem 2. If G is a normal graph, then x/(G) < 2x'(G).

According to the famous Vizing’s theorem [4], x'(G) < A(G)+1.Thus as animmediate consequence we have the following
corollary.

Corollary 3. If G is a normal graph, then x/(G) < 2A(G) + 2.

Furthermore, y,(G) of a normal graph G with A(G) = 2 k € N, k > 2, does not exceed 2A(G), as stated in the next
theorem.

Theorem 4. If G is a normal graph with A(G) < 2¥, where k is an integer, and k > 2, then X(G) < 21,

The proofs of Theorems 2 and 4 are deferred to Section 3. First, we prove the statements that we will use in the proofs of
these two theorems.

2. Preliminaries
Ballister et al. [2] proved the first part, while Wang et al. [5] proved the second and third parts of the following theorem.

Theorem 5. Let G be a normal graph.

1. If A(G) < 3, then x/(G) < 5.
2. If A(G) < 4, then x/(G) < 8.
3. If A(G) <5, then x/(G) < 10.

The following lemma and theorem, proved in [6], are the main tools used in papers [6] and [5] to attain the upper bounds.
Lemma 6. If normal graph G has an edge-partition into normal graphs Gy and G, then x/(G) < x.(G1) + x4(G2).

Theorem 7. Let G be a normal graph with A(G) > 6. Then there is an edge-partition of G into normal graphs H, and H,, such
that:

1. A(Hy) <3,
2. A(Hy) < A(G) — 2.

The bound x/(G) < %A(G) was proved by repeatedly applying the theorem above, and relying on the bounds of x/(H) for
graphs with A(H) < 5.

We propose a procedure that is also edge-partitioning of a graph into two normal graphs, and then make use of Lemma 6.
The difference is that we show how to produce an edge-partition of a normal graph G that has x'(G) = k into normal graphs
H; and H, with x/(H1) < 4and x'(H,) < k— 2. Consequently, using the bounds from Theorem 5 we get that x/(G) < 2x'(G)
for any normal graph G.

Define a function wg : E(G) — N by

wg(uv) = deg(u) + deg(v)

for each uv € E(G). We use the next theorem in the proofs of Theorems 2 and 4 to show that a minimal counterexample of
a graph does not contain an edge uv with wg(uv) < A(G) + 2.

Theorem 8. Assume that there exists a connected graph G with A(G) > 4 and x/(G) > 2k where A(G) < k.If wg(uv) < A(G)+2
for some uv € E(G), then there exists a normal graph H with A(H) < A(G), |[E(H)| < |E(G)|, and x,(H) > 2k.

Proof. Suppose that the statement is false. Let uv be an edge with wg(uv) < A(G) + 2, and let H = G — uwv. Clearly,
A(H) < A(G) and |E(H)| < |E(G)|. Thus if H is a normal graph, then x/(H) < 2k. Denote by L the set of colors {1, ..., 2k}.

Assume first that H is not a normal graph. Since G is a normal graph, this means that one of the vertices u and v, say v,
has only one adjacent vertex w in H, and degy(w) = 1. Now let H' = G — vw. Then degy,(v) = 1 and degy (w) = 0. Also,
degy/(u) > 1 since G is a connected graph with A(G) > 4. Thus H' is a normal graph. Then there exists an nde-coloring o
of H' with colors from L. Let ¢ be an edge coloring of G with ¢(e) = o (e) for every e € E(H’). Assign to vw any color from L
different from ¢(uv), and if deg;(u) = degs(v) = 2, a color not in Cy(u). Since |L| > 2, this can always be done; thus ¢ is an
nde-coloring with not more than 2k colors. This produces a contradiction.

Therefore, we may assume that H is a normal graph, implying that x,(H) < 2k. Depending on whether vertices u and v
have a common neighbor, we consider two cases.

1. Ng(u) N Ng(v) = 0. Let H' be a graph obtained from G by contracting the edge uv, and denote by w the vertex obtained
by identifying u and v. Since degy/(w) = degg(u) + degg(v) — 2 < A(G), it follows that A(H') < A(G). Hence
|[E(H")| < |E(G)| and so x,(H') < 2k. Let o’ be an nde-coloring of H" with colors from L. Next, define an edge coloring
o of H in the following manner:
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