ARTICLE IN PRESS

Discrete Mathematics (

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Edge-partitions of graphs and their neighbor-distinguishing index

Bojan Vučković

Mathematical Institute, Serbian Academy of Science and Arts, Kneza Mihaila 36 (P.O. Box 367), 11001 Belgrade, Serbia

ARTICLE INFO

Article history: Received 1 March 2017 Received in revised form 4 July 2017 Accepted 5 July 2017 Available online xxxx

Keywords: Neighbor-distinguishing edge coloring Maximum degree Edge-partition

ABSTRACT

A proper edge coloring is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The minimum number of colors needed for a neighbor-distinguishing edge coloring is the neighbor-distinguishing index, denoted by $\chi'_a(G)$. A graph is normal if it contains no isolated edges. Let *G* be a normal graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and the chromatic index of *G*, respectively. We modify the previously known techniques of edge-partitioning to prove that $\chi'_a(G) \leq 2\chi'(G)$, which implies that $\chi'_a(G) \leq 2\Delta(G)+2$. This improves the result in Wang et al. (2015), which states that $\chi'_a(G) \leq \frac{5}{2}\Delta(G)$ for any normal graph. We also prove that $\chi'_a(G) \leq 2\Delta(G)$ when $\Delta(G) = 2^k$, *k* is an integer with $k \geq 2$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and finite. Let V(G), E(G), and $\Delta(G)$ denote the vertex set, the edge set, and the maximum degree of a graph *G*, respectively. Let $N_G(v)$ and $\deg_G(v) = |N_G(v)|$ denote the set of neighbors and the degree of a vertex v in *G*, respectively. An *edge-partition* of a graph *G* into subgraphs G_1, \ldots, G_m is a decomposition of *G* such that $E(G) = \bigcup_{i=1}^m E(G_i)$ and $E(G_i) \cap E(G_j) = \emptyset$ for any pair $i \neq j$. For a graph *G* and any $S \subseteq E(G)$, the *edge-induced subgraph* G[S] is the subgraph of *G* whose edge set is *S* and whose vertex set consists of all end vertices of the edges in *S*.

A proper edge *k*-coloring of a graph *G* is a function $\phi : E(G) \rightarrow \{1, ..., k\}$ such that every two adjacent edges receive different colors. The *chromatic index* $\chi'(G)$ of a graph *G* is the minimum positive integer *k* for which *G* has a proper edge *k*-coloring. Given an edge *k*-coloring ϕ of *G*, we use $C_{\phi}(v)$ to denote the set of colors assigned to the edges incident with *v*. The edge coloring ϕ is called *neighbor-distinguishing* (in some papers *adjacent vertex distinguishing*), or nde-coloring for short, if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices *u* and *v*.

The neighbor-distinguishing index $\chi'_{a}(G)$ of a graph *G* is the smallest integer *k* such that *G* has a *k*-nde-coloring. A graph *G* is *normal* if it contains no isolated edges. It is obvious that *G* has an nde-coloring if and only if *G* is normal; thus we consider only normal graphs when examining an nde-coloring.

Zhang, Liu and Wang [7] introduced and investigated a neighbor-distinguishing edge coloring of graphs, where they proposed the following conjecture.

Conjecture 1. If *G* is a connected normal graph different from a 5-cycle, then $\chi'_a(G) \leq \Delta(G) + 2$.

Akbari, Bidkhori and Nosrati [1] proved that $\chi'_a(G) \leq 3\Delta(G)$ for any normal graph *G*. Zhang, Wang and Lih [6] proved a better upper bound, $\chi'_a(G) \leq \frac{5}{2}\Delta(G) + 5$. Wang, Wang and Huo [5] improved this result by showing that $\chi'_a(G) \leq \frac{5}{2}\Delta(G)$. Our main result is the following improvement of the upper bound for χ'_a .

E-mail address: vuckochess@gmail.com.

http://dx.doi.org/10.1016/j.disc.2017.07.005 0012-365X/© 2017 Elsevier B.V. All rights reserved.

2

ARTICLE IN PRESS

Theorem 2. If G is a normal graph, then $\chi'_a(G) \leq 2\chi'(G)$.

According to the famous Vizing's theorem [4], $\chi'(G) \leq \Delta(G)+1$. Thus as an immediate consequence we have the following corollary.

Corollary 3. If G is a normal graph, then $\chi'_a(G) \leq 2\Delta(G) + 2$.

Furthermore, $\chi'_{a}(G)$ of a normal graph G with $\Delta(G) = 2^{k}$, $k \in \mathbb{N}$, k > 2, does not exceed $2\Delta(G)$, as stated in the next theorem.

Theorem 4. If G is a normal graph with $\Delta(G) \leq 2^k$, where k is an integer, and $k \geq 2$, then $\chi'_a(G) \leq 2^{k+1}$.

The proofs of Theorems 2 and 4 are deferred to Section 3. First, we prove the statements that we will use in the proofs of these two theorems.

2. Preliminaries

Ballister et al. [2] proved the first part, while Wang et al. [5] proved the second and third parts of the following theorem.

Theorem 5. Let G be a normal graph.

- 1. If $\Delta(G) \leq 3$, then $\chi'_a(G) \leq 5$.
- 2. If $\Delta(G) \leq 4$, then $\chi'_a(G) \leq 8$.
- 3. If $\Delta(G) \le 5$, then $\chi'_a(G) \le 10$.

The following lemma and theorem, proved in [6], are the main tools used in papers [6] and [5] to attain the upper bounds.

Lemma 6. If normal graph G has an edge-partition into normal graphs G_1 and G_2 , then $\chi'_a(G) \le \chi'_a(G_1) + \chi'_a(G_2)$.

Theorem 7. Let *G* be a normal graph with $\Delta(G) \ge 6$. Then there is an edge-partition of *G* into normal graphs H_1 and H_2 , such that:

- 1. $\Delta(H_1) \leq 3$,
- 2. $\Delta(H_2) \leq \Delta(G) 2.$

The bound $\chi'_a(G) \leq \frac{5}{2}\Delta(G)$ was proved by repeatedly applying the theorem above, and relying on the bounds of $\chi'_a(H)$ for graphs with $\Delta(H) \leq 5$.

We propose a procedure that is also edge-partitioning of a graph into two normal graphs, and then make use of Lemma 6. The difference is that we show how to produce an edge-partition of a normal graph *G* that has $\chi'(G) = k$ into normal graphs H_1 and H_2 with $\chi'_a(H_1) \le 4$ and $\chi'(H_2) \le k - 2$. Consequently, using the bounds from Theorem 5 we get that $\chi'_a(G) \le 2\chi'(G)$ for any normal graph *G*.

Define a function $w_G : E(G) \to \mathbb{N}$ by

 $w_G(uv) = \deg(u) + \deg(v)$

for each $uv \in E(G)$. We use the next theorem in the proofs of Theorems 2 and 4 to show that a minimal counterexample of a graph does not contain an edge uv with $w_G(uv) \le \Delta(G) + 2$.

Theorem 8. Assume that there exists a connected graph G with $\Delta(G) \ge 4$ and $\chi'_a(G) > 2k$ where $\Delta(G) \le k$. If $w_G(uv) \le \Delta(G)+2$ for some $uv \in E(G)$, then there exists a normal graph H with $\Delta(H) \le \Delta(G)$, |E(H)| < |E(G)|, and $\chi'_a(H) > 2k$.

Proof. Suppose that the statement is false. Let uv be an edge with $w_G(uv) \leq \Delta(G) + 2$, and let H = G - uv. Clearly, $\Delta(H) \leq \Delta(G)$ and |E(H)| < |E(G)|. Thus if H is a normal graph, then $\chi'_a(H) \leq 2k$. Denote by L the set of colors $\{1, \ldots, 2k\}$.

Assume first that *H* is not a normal graph. Since *G* is a normal graph, this means that one of the vertices *u* and *v*, say *v*, has only one adjacent vertex *w* in *H*, and deg_{*H*}(*w*) = 1. Now let H' = G - vw. Then deg_{*H'*}(*v*) = 1 and deg_{*H'*}(*w*) = 0. Also, deg_{*H'*}(*u*) > 1 since *G* is a connected graph with $\Delta(G) \ge 4$. Thus *H'* is a normal graph. Then there exists an nde-coloring σ of *H'* with colors from *L*. Let ϕ be an edge coloring of *G* with $\phi(e) = \sigma(e)$ for every $e \in E(H')$. Assign to *vw* any color from *L* different from $\phi(uv)$, and if deg_{*G*}(*u*) = deg_{*G*}(*v*) = 2, a color not in $C_{\phi}(u)$. Since |L| > 2, this can always be done; thus ϕ is an nde-coloring with not more than 2*k* colors. This produces a contradiction.

Therefore, we may assume that *H* is a normal graph, implying that $\chi'_a(H) \leq 2k$. Depending on whether vertices *u* and *v* have a common neighbor, we consider two cases.

1. $N_G(u) \cap N_G(v) = \emptyset$. Let H' be a graph obtained from G by contracting the edge uv, and denote by w the vertex obtained by identifying u and v. Since $\deg_{H'}(w) = \deg_G(u) + \deg_G(v) - 2 \le \Delta(G)$, it follows that $\Delta(H') \le \Delta(G)$. Hence |E(H')| < |E(G)| and so $\chi'_a(H') \le 2k$. Let σ' be an nde-coloring of H' with colors from L. Next, define an edge coloring σ of H in the following manner:

Please cite this article in press as: B. Vučković, Edge-partitions of graphs and their neighbor-distinguishing index, Discrete Mathematics (2017), http://dx.doi.org/10.1016/j.disc.2017.07.005.

Download English Version:

https://daneshyari.com/en/article/8903227

Download Persian Version:

https://daneshyari.com/article/8903227

Daneshyari.com