Discrete Mathematics (

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Hankel determinants of linear combinations of consecutive Catalan-like numbers

Lili Mu^a, Yi Wang^{b,*}, Yeong-Nan Yeh^{b,c}

^a School of Mathematics, Liaoning Normal University, Dalian 116024, China

^b School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

^c Institute of Mathematics, Academia Sinica, Taipei 10617, China

ARTICLE INFO

Article history: Received 13 March 2017 Received in revised form 22 June 2017 Accepted 5 July 2017 Available online xxxx

Keywords: Hankel determinant Catalan-like number Generating function

ABSTRACT

Let $(a_n)_{n>0}$ be a sequence of the Catalan-like numbers. We evaluate Hankel determinants det $[\lambda a_{i+j} + \mu a_{i+j+1}]_{0 \le i,j \le n}$ and det $[\lambda a_{i+j+1} + \mu a_{i+j+2}]_{0 \le i,j \le n}$ for arbitrary coefficients λ and μ . Our results unify many known results of Hankel determinant evaluations for classic combinatorial counting coefficients, including the Catalan, Motzkin and Schröder numbers. © 2017 Elsevier B.V. All rights reserved.

(1.1)

1. Introduction

Given a sequence $(a_n)_{n\geq 0}$, define its Hankel matrix $[a_{i+j}]_{i,j\geq 0}$ and the nth Hankel determinant det $[a_{i+j}]_{0\leq i,j\leq n}$. Hankel determinants occur naturally in diverse areas of mathematics. In recent years, there has been a considerable amount of interest in the evaluation of Hankel determinants $det[a_{i+i+m}]_{0 \le i,j \le n}$ and $det[a_{i+i+m} + a_{i+i+m+1}]_{0 \le i,j \le n}$ involving various combinatorial sequences [1-3,5-12,14-16,18]. As we will see in Examples 2.4 and 2.5, these combinatorial sequences, including the Catalan numbers, the Motzkin numbers and the Schröder numbers, turn out to be the so-called Catalan-like numbers (or generalized Motzkin numbers [19]). The purpose of this paper is to provide a unified framework for previous results from the viewpoint of Catalan-like numbers.

Let $\mathfrak{s} = (s_k)_{k\geq 0}$ and $\mathfrak{t} = (t_k)_{k\geq 1}$ be two sequences of nonnegative numbers and define an infinite lower triangular matrix $A = [a_{n,k}]_{n,k>0}$ by the recurrence

$$a_{0,0} = 1, \quad a_{n+1,k} = a_{n,k-1} + s_k a_{n,k} + t_{k+1} a_{n,k+1},$$

where $a_{n,k} = 0$ unless $n \ge k \ge 0$. Clearly, all $a_{n,n} = 1$. Following Aigner [3], we say that A is the *recursive matrix* and $a_n = a_{n,0}$ are the *n*th Catalan-like numbers corresponding to $(\mathfrak{s}, \mathfrak{t})$.

Example 1.1. The Catalan-like numbers unify many well-known counting coefficients, such as

- (i) the Catalan numbers C_n when $\mathfrak{s} = (1, 2, 2, ...)$ and $\mathfrak{t} = (1, 1, 1, ...)$;
- (ii) the shifted Catalan numbers C_{n+1} when $\mathfrak{s} = (2, 2, 2, ...)$ and $\mathfrak{t} = (1, 1, 1, ...)$;
- (iii) the Motzkin numbers M_n when $\mathfrak{s} = \mathfrak{t} = (1, 1, 1, ...)$; (iv) the central binomial coefficients $\binom{2n}{n}$ when $\mathfrak{s} = (2, 2, 2, ...)$ and $\mathfrak{t} = (2, 1, 1, ...)$;

Corresponding author.

http://dx.doi.org/10.1016/j.disc.2017.07.004 0012-365X/© 2017 Elsevier B.V. All rights reserved.

E-mail addresses: lly-mu@hotmail.com (L. Mu), wangyi@dlut.edu.cn (Y. Wang), mayeh@gate.sinica.edu.tw (Y.-N. Yeh).

2

ARTICLE IN PRESS

- (v) the central trinomial coefficients T_n when $\mathfrak{s} = (1, 1, 1, ...)$ and $\mathfrak{t} = (2, 1, 1, ...)$;
- (vi) the central Delannoy numbers D_n when $\mathfrak{s} = (3, 3, 3, ...)$ and $\mathfrak{t} = (4, 2, 2, ...)$;
- (vii) the large Schröder numbers r_n when $\mathfrak{s} = (2, 3, 3, ...)$ and $\mathfrak{t} = (2, 2, ...)$;
- (viii) the little Schröder numbers S_n when $\mathfrak{s} = (1, 3, 3, ...)$ and $\mathfrak{t} = (2, 2, ...)$;
- (ix) the Fine numbers F_n when $\mathfrak{s} = (0, 2, 2, ...)$ and $\mathfrak{t} = (1, 1, 1, ...)$; (x) the Riordan numbers R_n when $\mathfrak{s} = (0, 1, 1, ...)$ and $\mathfrak{t} = (1, 1, 1, ...)$;
- (x) the (restricted) hexagonal numbers h_n when $\mathfrak{s} = (\mathfrak{z}, \mathfrak{z}, \mathfrak{z}, \ldots)$ and $\mathfrak{t} = (\mathfrak{z}, \mathfrak{z}, \mathfrak{z}, \ldots)$; (xi) the (restricted) hexagonal numbers h_n when $\mathfrak{s} = (\mathfrak{z}, \mathfrak{z}, \mathfrak{z}, \ldots)$ and $\mathfrak{t} = (\mathfrak{z}, \mathfrak{z}, \mathfrak{z}, \ldots)$;
- (xii) the Bell numbers B_n when $\mathfrak{s} = \mathfrak{t} = (1, 2, 3, 4, \ldots)$;
- (xiii) the factorial *n*! when s = (1, 3, 5, 7, ...) and t = (1, 4, 9, 16, ...).

The Catalan-like numbers have a nice combinatorial interpretation from the viewpoint of weighted lattice paths. A Motzkin path of length *n* is a lattice path from (0, 0) to (n, 0) consisting of up steps (1, 1), down steps (1, -1) and horizontal steps (1, 0) that never falls below the *x*-axis. The height of a step in a Motzkin path is the *y* coordinate of the starting point. Assign a weight 1 (s_k , t_k , resp.) to all up steps (all horizontal steps, all down steps, resp.) of height *k*. Define the weight of a Motzkin path to be the product of weights of its steps. Then the Catalan-like number a_n counts the total weight of all Motzkin paths of length *n*.

The Catalan-like numbers are closely related to continued fractions and orthogonal polynomials. Let a_n be the Catalan-like numbers corresponding to (s, t). Then

$$\sum_{n\geq 0} a_n x^n = \frac{1}{1 - s_0 x - \frac{t_1 x^2}{1 - s_1 x - \frac{t_2 x^2}{1 - s_1 x - \cdots}}}.$$

Let $(p_n(x))_{n\geq 0}$ be the sequence of orthogonal polynomials with respect to the linear operator $\mathcal{L}(x^n) = a_n$. Then $\mathcal{L}(p_m(x)p_n(x)) = \delta_{m,n}t_1 \cdots t_n$ and

$$p_{n+1}(x) = (x - s_n)p_n(x) - t_n p_{n-1}(x), \quad p_0(x) = 1.$$

For an infinite matrix $M = [m_{i,j}]_{i,j\geq 0}$, let $M_n = [m_{i,j}]_{0\leq i,j\leq n}$ denote its *n*th leading principal submatrix and $\delta_n(M) = \det M_n$. For convenience, denote $\delta_{-1}(M) = 1$. Let

$$J = \begin{bmatrix} s_0 & 1 & & & \\ t_1 & s_1 & 1 & & \\ & t_2 & s_2 & 1 & \\ & & t_3 & s_3 & \ddots \\ & & & \ddots & \ddots \end{bmatrix}$$

denote the coefficient matrix of the recursive relation (1.1) and $d_n = \delta_n(J)$. Denote $T_0 = 1$ and $T_n = t_1 t_2 \cdots t_n$ for $n \ge 1$. The following result is folklore (see [3,19] for instance).

Proposition 1.2. Let a_n be the Catalan-like numbers corresponding to $(\mathfrak{s}, \mathfrak{t})$. Then

(i) det $[a_{i+j}]_{0 \le i,j \le n} = T_1 \cdots T_n$. (ii) det $[a_{i+j+1}]_{0 \le i,j \le n} = T_1 \cdots T_n d_n$. (iii) det $[a_{i+j+2}]_{0 \le i,j \le n} = T_1 \cdots T_n T_{n+1} \sum_{i=-1}^n \frac{d_i^2}{T_{i+1}}$.

For $\lambda, \mu \in \mathbb{R}$, let

$$d_n^{(\lambda,\mu)} = \det \begin{bmatrix} \lambda + \mu s_0 & \mu & & \\ \mu t_1 & \lambda + \mu s_1 & \mu & & \\ & \mu t_2 & \ddots & \ddots & \\ & & \ddots & \lambda + \mu s_{n-1} & \mu \\ & & & & \mu t_n & \lambda + \mu s_n \end{bmatrix}.$$

Then $d_n^{(1,0)} = 1$ and $d_n^{(0,1)} = d_n$. Our main results are the following general formulae.

Theorem 1.3. Let a_n be the Catalan-like numbers corresponding to $(\mathfrak{s}, \mathfrak{t})$. Then

(i) det[
$$\lambda a_{i+j} + \mu a_{i+j+1}$$
]_{0 \le i,j \le n} = $T_1 \cdots T_n d_n^{(\lambda,\mu)}$.
(ii) det[$\lambda a_{i+j+1} + \mu a_{i+j+2}$]_{0 \le i,j \le n} = $T_1 \cdots T_n T_{n+1} \sum_{i=-1}^n \frac{d_i d_i^{(\lambda,\mu)}}{T_{i+1}} \mu^{n-i}$.

In the next section, we give the proof of the theorem and then present applications on some interesting Catalan-like numbers. Our results unify many known results of Hankel determinant evaluations for classic combinatorial counting coefficients, including the Catalan, Motzkin and Schröder numbers.

Download English Version:

https://daneshyari.com/en/article/8903229

Download Persian Version:

https://daneshyari.com/article/8903229

Daneshyari.com